
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Solving Quantum Many-Body Problem with
Feed-Forward Neural Networks

Sheng-Hsuan Lin

Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Solving Quantum Many-Body Problem with
Feed-Forward Neural Networks

Author: Sheng-Hsuan Lin
1st examiner: Univ.-Prof. Dr. Lode Pollet

2nd examiner: Univ.-Prof. Dr. Frank Pollmann
Submission Date: April 1st, 2018

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

April 1st, 2018 Sheng-Hsuan Lin

Acknowledgments

The work in this thesis could not be done without the support and help from many
people. I would especially like to thank

• Alexander Wolf for motivating me to start thinking about the connection between
machine learning and computational methods in condense matter physics, which
this thesis only cover a small part of it.

• Fabian Heidrich-Meisner for providing research opportunity and guidance so I could
keep in touch with physics in my Master study.

• Lode Pollet for granting the freedom to explore and providing support when needed.

• Frank Pollmann for useful discussion and ideas that could not be covered in this
thesis due to time limitation.

• Jonas Greitemann for comparing results and teaching me not only physics but pro-
gramming.

• Lei Wang for pointing out the connection to reinforcement learning.

• Jinguo Liu for useful discussion in Marburg.

• Ivan Glasser, Giuseppe Carleo and Zi Cai for sharing detail of their works.

• Yu Wang, Yuanze Chen, and Yi-An Lai for useful discussions about machine learn-
ing.

• Cordula Weber for helps with administrative task.

• my family for all the support throughout the years.

vii

"The problems of continuous mathematics are the problems that science and engineering are built
upon; without numerical methods, science and engineering as practiced today would come quickly

to a halt. They are also the problems that preoccupied most mathematicians from the time of
Newton to the twentieth century. As much as any pure mathematicians, numerical analysts are

the heirs to the great tradition of Euler, Lagrange, Gauss and the rest. If Euler were alive today, he
wouldn’t be proving existence theorems."

-Lloyd N. Trefethen

viii

Abstract

Motivated by the success of describing quantum states with restricted Boltzmann ma-
chine, we consider general feed-forward neural networks as variational wavefunctions.
We show that with variational Monte Carlo method or with supervised learning, neural
networks could be trained to represent quantum states. We demonstrated the ability of
neural network representing quantum states on frustrated problems including 1d and 2d
J1-J2 model. The difficulties of optimization large number of parameters are addressed.
Considering the connection between natural gradient method and stochastic reconfigura-
tion method, we point out possible ways to extend the result to deep networks with large
number of parameters.

ix

Contents

Acknowledgements

.

vii

Abstract

.

ix

I. Introduction and Background Theory

.

1

1. Introduction

.

3

II. Body

.

5

2. Method I: Variational Monte Carlo

.

7
2.1. Problem Description

.

. 7
2.2. Variational Monte Carlo algorithm

.

. 8
2.2.1. Expectation value of observable

.

. 8
2.2.2. Minimization of expectation value of observable

.

. 9
2.2.3. Statistics of Variational Monte Carlo

.

. 12
2.2.4. Stochastic Reconfiguration / Natural Gradient Method

.

. 14
2.2.5. Stochastic Reconfiguration / Time Evolution

.

. 18
2.2.6. Damping/Regularization and Stepsize

.

. 21
2.2.7. Computational Complexity

.

. 23
2.2.8. Fidelity and Entanglement

.

. 24
2.3. Trial wavefunctions

.

. 26
2.3.1. Matrix Product States (MPS)

.

. 26
2.3.2. Entangled Plaquette States (EPS), Correlator Product State (CPS)

.

. . 26
2.3.3. String-Bond States (SBS)

.

. 29
2.3.4. Restricted Boltzmann Machine Quantum State (RBMQS)

.

. 30
2.3.5. Neural Network Quantum State (NNQS)

.

. 32
2.3.6. Convolutional Neural Network Quantum State (CNNQS)

.

. 33
2.3.7. Symmetry and Invariance

.

. 34
2.3.8. Translational Invariant Restricted Boltzmann Machine

.

. 35

3. Method II: Machine Learning

.

37
3.1. Supervised Learning

.

. 37
3.2. Linear Model

.

. 39

xi

Contents

3.3. Neural Network

.

. 42
3.3.1. Optimization of Neural Network

.

. 44
3.3.2. Initialization of Neural Network

.

. 46
3.4. Policy Based Reinforcement Learning

.

. 48
3.5. Kronecker-Factored Approximate Curvature

.

. 51
3.6. Connection to Methods in Condensed Matter Physics

.

. 52

4. Literature Review

.

55

III. Results and Discussion

.

57

5. Results and Discussion

.

59
5.1. Implementation

.

. 59
5.1.1. Wavefunction evaluation with level 3 parallelization

.

. 60
5.1.2. GPU Speed up

.

. 61
5.2. VMC Result

.

. 61
5.2.1. Distribution of the coefficients of eigenvectors

.

. 61
5.2.2. Optimization methods

.

. 65
5.2.3. VMC with NNQS

.

. 68
5.3. Supervised Learning Result

.

. 69
5.3.1. From exact diagonalization

.

. 70
5.3.2. From Monte Carlo sampling

.

. 71
5.4. Discussion and Future work

.

. 71

Appendix

.

75

A. Neural Network Quantum State (NNQS)

.

75
A.1. Guide

.

. 75

B. Visualization of Weights

.

77
B.1. tRBM

.

. 77
B.2. FCN2

.

. 77

Bibliography

.

83

xii

Part I.

Introduction and Background Theory

1

1. Introduction

One well-known challenge in both quantum many-body and machine learning problem is
the underlying exponentially large dimensionality. On the Physics side, the large dimen-
sionality lies in both the description of the problem, i.e. the Hamiltonian, and the solutions,
i.e. the eigenstates of the Hamiltonian. Although we call the eigenstates the solutions, in
fact, the quantities we are interested in are the expectation values of the observable. If
one could have the eigenstate or wavefunction, one could calculate the expectation values
explicitly. But even if one does not know the wavefunction, if one could directly calculate
the expectation values, one still solve the problem. This includes a broad range of methods
like, Quantum Monte Carlo (QMC), which are not the interest of this thesis. In the follow-
ing, we review different methods involving explicit computation of the wavefunction.

The difficulty comes in two-fold: What is an efficient representation and how to find the
representation through the optimization efficiently. Physicists have been trying to come
up with different efficient expression of the wavefunction, which by polynomial many pa-
rameters could be able to capture the essence of the quantum state. A whole range of tech-
niques including, Matrix Product States (MPS), Projected Entangled Pair States (PEPS), En-
tangled Plaquette States (EPS)/Correlator Product States (CPS), String Bond States (SBS),
etc, were developed, which all fall under the category of tensor network methods.

In one dimension, the great success of MPS comes not only from the fact the majority of
physically interesting states are area-law entangled, which leads to efficient representation,
but also because there exist efficient algorithms, e.g. DMRG, in finding the targeted wave-
function. Optimization of DMRG like methods can be carried out efficiently by sweeping
and updating the core of the tensor. This can not be generalized in higher dimension.

In higher dimension, sometimes even though we know the efficient representation of
the state, we could not efficiently find the targeted state. In other words, we could identify
a relevant subspace. However, the computational cost for optimization is too expensive
and need to rely on approximation. Even after the optimization and identifying the state,
the computation of expectation value involves contraction that is #P hard [75

.

].
Variational Monte Carlo (VMC) is an optimization method in finding the ground state

with a given parametrization of the wavefunction (see [22

.

] for a general review). VMC
is a less efficient method but also sign-problem free. Back in the old days, people usu-
ally optimized over some relatively restricted wavefunctions with less than ten parame-
ters. As a result, even though VMC itself is unbiased, the choice of how wavefunction
is parametrized could be highly biased. One could perform VMC with MPS, which then
is biased in terms of entanglement [74

.

, 76

.

, 13

.

, 80

.

]. By increasing number of variational
parameters, the result will be less biased.

3

1. Introduction

Machine learning problems, on the other hand, are also about extracting relevant in-
formation from exponentially large dimensionality. Recently, Giuseppe et al. propose
the idea of using restricted Boltzmann machine (RBM) as variational trial wavefunction
[9

.

], which brought up discussion over the connection between RBM and Tensor Network
[12

.

, 23

.

, 16

.

, 45

.

]. These study focused on the physical properties of RBM, where the prop-
erties of general neural network is yet studied. RBM stems from the hope to mimic the
memory scheme of people, which learns the underlying input probability distribution. It
is used for mainly for unsupervised learning [42

.

, 73

.

]. RBM could be viewed as an undi-
rected probabilistic graphical model (PGM) or a stochastic neural network. In this thesis,
we consider general feed-forward neural network as quantum state (NNQS) and study
their properties.

As like RBM, feed-forward neural networks with one hidden layer is shown to be an
universal approximators [43

.

, 15

.

]. As like MPS without truncation spans the full Hilbert
space and MPS with finite bond dimension covers the low entanglement corner of the
Hilbert space, the question is whether networks with small enough hidden units can rep-
resent the wavefunction we are interested in. In addition, deep neural networks are able
to represent certain class of functions with polynomial many parameters while it takes a
shallow networks exponentially many hidden units to do so [59

.

]. It might be the case that
the wavefunctions we are interested in could only be represented by special kind of ar-
chitecture. Aside from numerical testing with different architectures, an analysis with the
maximum entanglement that a neural network could encode might be useful. Such anal-
ysis might also help the Machine Learning community to develop a way to systematically
design new neural network.

The structure of the thesis is as follows. We review the variational Monte Carlo method
in chapter 2

.

, including the problem setup in 2.1

.

, technical details for variational Monte
Carlo method in 2.2

.

and the trial wavefunctions in 2.3

.

. In chapter 3

.

, we describe the back-
ground for supervised learning in 3.1

.

and give linear models as example in 3.2

.

and moti-
vates the neural networks as functions with composite non-linear transformations in 3.3

.

.
The connection of variational Monte Carlo and reinforcement learning is discussed in 3.4

.

.
With the connection, a promising approximated second-order method for neural network
known as K-FAC is introduced in 3.5

.

. Even though not the main concern of this thesis,
interesting connection for methods in condensed matter physics and machine learning is
discussed in 3.6

.

. Previous works related to this thesis are reviewed in chapter 4

.

. Results in
chapter 5

.

include the explanation of the NNQS implementation in 5.1

.

, result for VMC with
NNQS in 5.2

.

and result for supervised learning with NNQS in 5.3

.

. We end with discussion
of NNQS and possible future works in 5.4

.

.

4

Part II.

Body

5

2. Method I: Variational Monte Carlo

2.1. Problem Description

We consider the discrete quantum many-body problem on lattice. The problems are de-
fined by the Hamiltonian of the system, of which the size grows exponentially with the
systems size. One fundamental problem in condensed matter physics is about solving
these large scale eigenvalue problems

Ĥ |ψ〉 = E |ψ〉 .

Consider a lattice of N sites, σ = {σ1, σ2, . . . , σN} is the computational basis represent-
ing the spin configuration. Suppose on each site, there is d local degree of freedom. The
total Hilbert space is of dimension dN . For a system with spin-1/2 particles, we would
have σi = 0, 1 representing |↑〉 , |↓〉, and d = 2S + 1 = 2. A pure quantum state is a vector
in this Hilbert space and can be expressed in the basis |σ1, σ2, . . . , σN 〉.

|ψ〉 =
∑
σ

|σ〉 〈σ|ψ〉 =
∑

σ1,...,σN

ψσ1,...,σN |σ1, . . . , σN 〉 (2.1)

where in general ψσ1,...,σN ∈ CdN . A restriction to R is possible if the Hamiltonian is not
complex-valued. In quantum physics, there are many situations where we are interested in
the ground state, which is the eigenvector with the lowest eigenvalue of some Hamiltonian
H describing the physical system. Once the state is known, various physical quantities
could be computed from the state. However, the exponential growth of the dimension
with respect to the system size N render both the exact representation and solving the
eigenvalue problem impossible.

One way to avoid this problem is to compute the physical quantities without knowing
the state, e.g. QMC. Another way to avoid this problem is to solve this problem approxi-
mately with efficient representation of the state. To be concrete, the exact wavefunction |ψ〉
is approximated by a function Ψ, which used less parameters, i.e. polynomial in system
size. We denote the parameters of the function as w and the function Ψ maps the given
configuration to the corresponding coefficient in the vector, that is

Ψ : σ ∈ {0, . . . , d− 1}N → Ψ(σ;w) = ψσ1,...,σN ∈ C (2.2)

throughout this thesis, we abused the notation between ψ and Ψ and simply write the
wavefunction as,

|ψ〉 =
∑
σ

|σ〉 〈σ|ψ〉 =
∑
σ

ψ(σ;w) |σ〉 =
∑
σ

ψσ1,...,σN |σ〉 (2.3)

7

2. Method I: Variational Monte Carlo

Typically the work flow would be the following: With a large matrix Ĥ describing sys-
tem, one first choose a specific kind of parameterization of the wavefunction. Then, the
eigenvalue problem is then cast as an optimization problem of finding the optimal param-
eters wopt that minimized the energy.

wopt = arg min
w

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

(2.4)

Based on prior knowledge about the state and different physical arguments, one could
assume a physical plausible trial wavefunction with fewer parameters. Even though, effi-
cient representations are biased, they usually give good description of the system. It could
also be thought that we are less biased with increasing number of parameters.

We will describe different ways to parametrized the wavefunction in section 2.3

.

. There
are different techniques developed to solve this optimization problem for specific forms of
wavefunction. For example, DMRG for MPS. Usually these specific kind of algorithm is
faster. In the following section 2.2

.

, we describe the variational Monte Carlo method, which
is a general algorithm that could solve the optimization problem for generic wavefunction.

2.2. Variational Monte Carlo algorithm

VMC is performed for two purpose. (1.) To calculate the expectation value of observable,
i.e. 〈ψ|Ô|ψ〉 / 〈ψ|ψ〉, given a wavefunction ψ. (2.) To find the optimal parameters for some
objective function, e.g. energy expectation value, in some restricted subspace. In other
word, given |ψ〉 = |ψ(w)〉, to find wopt such that

wopt = arg min
w

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

. (2.5)

2.2.1. Expectation value of observable

We first show that the expectation value of any quantum mechanical observable, Ô = Ô†,
can be calculated on a set of configurations obtained from Markov chain Monte Carlo
(MCMC) sampling from the wavefunction.

8

2.2. Variational Monte Carlo algorithm

〈ψ|Ô|ψ〉
〈ψ|ψ〉

=
∑
α

∑
β

〈ψ|α〉 〈α|Ô|β〉 〈β|ψ〉
〈ψ|ψ〉

(2.6)

=
∑
α

| 〈α|ψ〉 |2

〈ψ|ψ〉
∑
β

〈α|Ô|β〉 〈β|ψ〉
〈α|ψ〉

(2.7)

=
∑
α

P (α)Oloc(α)
.
= 〈Oloc〉 (2.8)

≈ 1

NMC

NMC∑
i=1

Oloc(αi) (2.9)

where α, β are complete basis and the local value of the observable at configuration σ,

Oloc(σ) =
∑
σ′

〈σ|Ô|σ′〉 Ψ(σ′)

Ψ(σ)
(2.10)

Assume there are at most k non-zero elements per row, the lattice sizeN , and the cost for
evaluating the wavefunction is given by Ceval. One could immediately see that the cost to
evaluate local value is of order O(kCeval). Ceval depends on the form of wavefunction and
would usually be O(N2) or O(N3). k depends on the operator chosen. Even though the
dimension of the operator grows exponentially with respect to system size dN , physical
observable is usually sparse. Therefore, we could still evaluate local value exactly. This
should apply for all operators that are sparse, i.e. small support. We will call the local
value of the Hamiltonian simply by the local energy.

The approximation only comes in at the last step, where we approximate the exact ex-
pectation value of the local value of observable by Markov chain sampling, as shown in
2.2.3

.

.

2.2.2. Minimization of expectation value of observable

To solve the optimization problem, eq.(2.4

.

), the simplest approach would be applying gra-
dient descent. We will show that we can formulate the evaluation of gradient in the same
structure as before. Therefore, the computation of exact gradient is replaced by stochastic
sampling. We end up with stochastic gradient descent algorithm. 1

.

Before diving into the formula for gradient, it is useful to first define some operators.

1The optimization problem is similar to that in policy-based Reinforcement Learning. See 3.4

.

.

9

2. Method I: Variational Monte Carlo

We define the log derivative with respect to the k-th parameter in the function,

∆k(σ)
.
=

1

Ψ(σ; w)
∂wkΨ(σ; w) (2.11)

∆̂k
.
=
∑
σ

|σ〉
[1

Ψ(σ; w)
∂wkΨ(σ; w)

]
〈σ| (2.12)

∆̂k |ψ〉 =
∑
α

|α〉
[1

〈α|ψ〉
∂wk 〈α|ψ〉

]
〈α|ψ〉 (2.13)

=
∑
α

|α〉 ∂wk 〈α|ψ〉 (2.14)

= ∂wk |ψ〉 (2.15)

Note that if the parameter is a complex number, one should be careful about the complex
conjugate.

∆̂∗k
.
=
∑
σ

|σ〉
[1

Ψ(σ; w)∗
∂w∗kΨ(σ; w)∗

]
〈σ| (2.16)

〈ψ| ∆̂∗k
.
=
∑
σ

∂w∗kΨ(σ; w)∗ 〈σ| =
∑
σ

∂w∗k 〈ψ|σ〉 〈σ| (2.17)

In the following, we consider two scenarios. One is an general complex-valued wave-
function parameterized by complex variables and the other with real variables. These two
scenarios are of no difference in terms of physics, but are important to distinguish in nu-
merical implementation.

If we consider complex parametrization, that means wi ∈ C and ψ : w ∈ CNw → ψ(w) ∈
C. To minimize a real-valued objective function, f , with respect to complex parameters w,
the steepest ascent direction is the direction of the derivative of the complex-conjugated
variables. And with the Wirtinger derivative, we have

w → w − ∂w∗f
∂f

∂w∗
=

1

2

(∂f
∂wR

+ i
∂f

∂wI

)

∂w∗k
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

=

(
∂w∗k 〈ψ|

)
Ĥ |ψ〉+ 0

〈ψ|ψ〉
−
[(
∂w∗k 〈ψ|

)
|ψ〉+ 0

]
〈ψ|Ĥ|ψ〉

〈ψ|ψ〉2
(2.18)

= 〈∆∗kEloc〉 − 〈∆∗k〉 〈Eloc〉 (2.19)

where we use the property that ∂w∗k |ψ(w)〉 = 0. We can now define the gradient vector,

Fk = 〈∆∗kEloc〉 − 〈∆∗k〉 〈Eloc〉 (2.20)
= 〈∆∗k(Eloc − 〈Eloc〉)〉 (2.21)

10

2.2. Variational Monte Carlo algorithm

Now, we could see if we consider a complex-valued wavefunction parametrized only
by real parameters, with the property from Wirtinger derivative, we immediately have,

Fk = 2Re
[
〈∆∗kEloc〉 − 〈∆∗k〉 〈Eloc〉

]
(2.22)

The same formula could also be derived by considering the complex-valued wavefunc-
tion with real parametrization, i.e. wi ∈ R, ψ : w ∈ RNw → ψ(w) ∈ C,

∂wk
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

=
〈∂wkψ|Ĥ|ψ〉+ 〈ψ|Ĥ|∂wkψ〉

〈ψ|ψ〉
− [〈∂wkψ|ψ〉+ 〈ψ|∂wkψ〉] 〈ψ|Ĥ|ψ〉

〈ψ|ψ〉2

=
[∑

α

P (α)
〈∂wkψ|α〉
〈ψ|α〉

Eloc(α) + c.c.
]
−
[∑

α

P (α)
〈∂wkψ|α〉
〈ψ|α〉

〈Eloc〉+ c.c.
]

=
∑
α

P (α)
[
∆∗k(α)Eloc(α)−∆∗k(α) 〈Eloc〉+ c.c.

]
= 2Re

[
〈∆∗kEloc〉 − 〈∆∗k〉 〈Eloc〉

]

Now we have the simple gradient descent algorithm for Variational Monte Carlo. See
algorithm 1

.

.

Result: The ground state wavefunction

Randomly initialize parameters w(0);
Choose stepsize δt;
while not converge do

Compute the gradient vector f ;
Update parameters with w(t+1) ← w(t) − δtf

end
Algorithm 1: Vanilla gradient descent algorithm

We could in general divide stochastic gradient descent algorithms into two categories.
The first category is first-order methods. This includes methods which have strategy for
adaptive stepsize [74

.

] or accumulating gradient history to lower the statistical error, but
are based on the information from first-order derivative of the objective function.

The second category is second-order methods. There are two different type of second-
order methods. The Newton method involves the inverse of the Hessian matrix of the
objective function [94

.

]. Approximation and stabilization could be added to ensure faster
and stable convergence [85

.

, 62

.

, 89

.

, 95

.

, 88

.

]. The stochastic reconfiguration method (SR),
a.k.a. natural gradient, involves the inverse of the metric on the projective Hilbert space
[84

.

].

11

2. Method I: Variational Monte Carlo

For most of the optimization in this thesis, we choose to use the SR method proposed by
Sorella [84

.

]. We first give the outline of the algorithm and give the derivation in the next
section 2.2.4

.

. The SR overlap matrix S, a.k.a. empirical Fubini-Study metric, is defined as

Skk′
.
= 〈∆∗k∆k′〉 − 〈∆∗k〉 〈∆k′〉 (2.23)

The algorithm is defined as in algorithm 2

.

Result: The ground state wavefunction

Randomly initialize parameters w(0);
Choose stepsize δt;
while not converge do

Compute the gradient vector f and SR matrix S;
Update parameters with w(t+1) ← w(t) − δtS−1f

end
Algorithm 2: Stochastic Reconfiguration algorithm

2.2.3. Statistics of Variational Monte Carlo

The essential part of all VMC algorithm is to compute the expectation value with respect to
the probability P (α) ∝ |ψ(α)|2. Note that the probability is defined by the wavefunction,
which in general would not be normalized. Due to the large dimension, the normalization
constant is intractable and so is to compute the expectation value exactly. The way to
overcome this is by stochastic sampling.

By stochastic sampling, we want to have a set of independent configurations {σ1, · · · ,σNMC
}

where the frequency of the configuration is proportional to the probability. Then the ex-
pectation value of certain observable is given by,

Eσ∼P

[
Oloc(σ)

]
≈ 1

NMC

NMC∑
i=1

Oloc(σi)

However, except for some specific case [21

.

], direct sampling from wavefunction is im-
possible. We therefore resort to Markov Chain Monte Carlo (MCMC) sampling. Here, we
give a breif review of Metropolis algorithm [56

.

] with local update used in this thesis.
There are several remarks on the properties of Markov chain sampling.

• Consecutive configurations sampled are correlated. Especially when local update
is applied to ensure a higher acceptance ratio. This is a problem because we will
underestimate the statistical error we made and the optimization might be unstable
without enough sampling.

12

2.2. Variational Monte Carlo algorithm

Result: Expectation value of observable or independent sampled configurations
from the wavefunction

Randomly initialize configuration σ;
Warm up the system by repeating step 1 and 2 long enough;
for i = 1 to NMC do

(1) Propose a new configuration σ′, which is based on a local update from the
current configuration, e.g. nearest neighbor swap, with probability
T (σ → σ′).;

(2) Accept the new configuration σ′ with probability min(1, T (σ→σ′)|ψ(σ′)|2|
T (σ′→σ)|ψ(σ)|2|);

(3) Compute the local values of the observables or store the configuration. ;
end

Algorithm 3: Metropolis-Hastings algorithm for VMC

We know that for independent and identically distributed random variables Xi, the
variance of a sum of random variables is equal to the sum of the variances, i.e.

Var
[∑

i

Xi

]
=
∑
i

Var
[
Xi

]

If the sampling is uncorrelated, we have

Var

[
1

NMC

NMC∑
i=1

Oloc(σi)

]
=

1

N2
MC

Var
[NMC∑
i=1

Oloc(σi)
]

(2.24)

=
1

N2
MC

NMC∑
i=1

Var
[
Oloc(σi)

]
=

Var
[
Oloc(σ)

]
NMC

(2.25)

The equality in second line is based on the i.i.d. property. Naively applying this
formula leads to underestimate of the variance.

• A standard way to solve this problem is by binning analysis. We can reorder the sum
such that

1

NMC

NMC∑
i=1

Oloc(σi) =
1

Nbin

Nbin∑
i=1

Obinloc,i, Obinloc =
1

nb

nb∑
i=1

Oloc(σi) (2.26)

The binned local values of the observable Obinloc,i would be uncorrelated if the size
of the bins is large enough. Typically, one can plot the variance with respect to the
size of the bins. The variance would saturate if the size of the bin is larger than the
autocorrelation length, i.e. the maximum length between correlated configuration in

13

2. Method I: Variational Monte Carlo

the Markov chain. In practice, one would calculate the observables on the fly while
keeping the moving averages and variances.

An alternative way is to only consider samples from Markov chain that are uncorre-
lated. In principle, we could figure out the autocorrelation length by binning anal-
ysis, then we consider the samples that is separated by each other longer than that.
In practice, one could simply sample once after N update, where N is the size of the
system. The argument is that afterN updates, the configuration could be completely
different from the previous one. We consider this approach in this thesis.

• Warm-up stage is expensive. However it is necessary to discard a portion of Markov
chain sampling, because at the beginning of the Markov chain, the probability of the
configuration is not yet the underlying distribution of the wavefunction. One way
to get around this is to store the configuration at the end of MC sampling. If the
gradient descent only change the wavefunction by a small amount, the configura-
tion stored from previous run should be still in equilibrium. Therefore, we may skip
the warm-up process. However, small stepsize in gradient descent does not guaran-
tee small amount of change in wavefunction. We will see how to safely update the
wavefunction with SR method in the next section.

• Unlike most Monte Carlo methods, VMC is sign-problem free and gives access to the

wavefunction. The error is given by std(E) =
√

(2τ+1)V ar(E)
NMC

. Also since variational
energy is an upper bound of the ground state energy. We could always give a precise
upper bound of the ground state energy.

2.2.4. Stochastic Reconfiguration / Natural Gradient Method

Stochastic gradient descent (SGD) is indisputably simplest but influential algorithm for
nonlinear optimization problem. Unlike the success of SGD in neural network learning,
SGD for learning quantum amplitude is inefficient if not possible. One major problem of
SGD algorithm is that it does not taking into account the geometry of the parameter space.2

.

The parameter space is usually curved. That means small change in some parameters
may have drastically different output. One should take this into account while moving in
the parameter space to find optimal parameters. The use of natural gradient guarantees
smooth learning in the parameter space.

In this section, we first discuss the natural gradient [2

.

], i.e. steepest descent method on
a Riemannian manifold. Two examples are shown. The first example of natural gradient is
the Fisher information metric in stochastic modeling. In the second example, we show SR
method can be formulated as natural gradient descent method with Fubini-Study metric
for quantum system. In the next section, we derive the SR methods from the physical
motivation of imaginary time evolution. This then give the SR a physical meaning.

2A way of putting this would be SGD tries to summing a contravaient vector with a covarient vector. To
make the formula make sense, we have already assume an Euclidean geometry.

14

2.2. Variational Monte Carlo algorithm

An optimization problem is defined by the parameter space M = {w ∈ Rn} and an
objective function L(w) on it. An implicit assumption is usually assumed here. That isM
is a Euclidean space with which w is the orthonormal coordinate. The distance is given by,

||dw||2 =
∑
i

(dwi)2 (2.27)

However, we should consider the general case, where the distance is given by,

||dw||2 =
∑
ij

gij(w)dwidwj (2.28)

where gij is the Riemannian metric and could be a function of w. The Euclidean distance
with orthonormal coordinate is a special case with gij = δij .

The steepest descent direction in a Riemannian space is given by,

∇̃L(w) = G−1(w)∇L(w) (2.29)

where G−1 = (gij) is the inverse matrix of G = (gij). The statement above comes from
the definition of steepest descent direction 3

.

. The steepest descent direction dw of function
L(w) at w is defined as the vector that minimize L(w + dw) where the vector dw has a
fixed length, i.e. ||dw||2 = ε and ε is a sufficient small constant.

This is a constrained optimization problem, that is

arg min
dw

L(w + dw) ≈ L(w) + dw · ∇L(w) (2.30)

subject to ||dw||2 = ε (2.31)

The problem is solved with Lagrangian method,

∂

∂dwi

[
L(w) + dw · ∇L(w) + λ

∑
jk

dwjgjkdwk

]
= 0 (2.32)

∇L(w)i − 2λ
∑
j

gijdwj = 0 (2.33)

dw =
1

2λ
G−1∇L(w) (2.34)

where λ is determined by the constraint of the length of vector. In principle, dw gives the
steepest descent direction in the limit of ε → 0. The vector ∇̃L(w) = G−1(w)∇L(w) is
called the natural gradient of L in the Riemannian space. In the special case of Euclidean
and orthonormal cooridnate, the gradient and natural gradient are the same. However, in
general, we have the natural gradient descent algorithm,

w(t+1) ← w(t) − η∇̃L(w(t)) (2.35)
3The phrase direction here is abused in a way that the vector is not necessary normalized.

15

2. Method I: Variational Monte Carlo

For those who works with proper covariant and contravariant tensor indices. The result
is trivial and could be stated as,

∂iL = gij∂jL (2.36)

wi ← wi − η∂iL (2.37)

In the following, we show the usage of natural gradient with two different metric in the
parameter space.

Example 1: Fisher information metric Consider a machine learning problem in finding
an optimal probability distribution P with respect to some loss function L = L(P). We
further assume that the "model" P = P(x;w) is the probability density function of con-
tinuous variable4

.

x parametrized by w. Gradient descent methods could then be used to
minimize the loss function L(w).

A common measure of the distance between two probability distributions is the KL di-
vergence. We would see that by expanding the KL divergence to the second order, we
obtain the Fisher information metric. As a result, if one want to apply natural gradient
method in stochastic model learning, one need to compute the Fisher information metric.
This is the most common form of natural gradient one usually encounter in the context of
machine learning.

If we have two probability distributions p(w) and p(w′), where w′ = w + dw. There-
fore, these two probability distributions are very similar. The distance between these two
probability distributions is given by the KL divergence.

d(w,w′) = KL(P (x;w)||P (x;w′))

=

∫
P (x;w) log

P (x;w)

P (x;w′)
dx

=

∫
P (x;w) logP (x;w)dx−

∫
P (x;w) logP (x;w)dx

−
∑

dwi

∫
P (x;w)∂wi logP (x;w)dx

− 1

2

∑
dwidwj

∫
P (x;w)∂wi∂wj logP (x;w)dx+ ∆(dw3)

= −1

2

∑
dwidwj

∫
P (x;w)∂wi∂wj logP (x;w)dx

=
1

2

∑
dwidwj

∫
P (x;w)

[
∂wi logP (x;w)∂wj logP (x;w)

]
dx

4All the argument below can be generalized to the discrete case.

16

2.2. Variational Monte Carlo algorithm

where we used the properties,∑
dwi∂wi

∫
P (x;w)dx = 0∑

dwidwj∂wi∂wj

∫
P (x;w)dx = 0

If one consider the symmetrized KL divergence J(p, p′) = KL(p||p′) + KL(p′||p), we would
then have the Fisher information metric,

gij(w) =

∫
P (x;w)

[
∂wi logP (x;w)∂wj logP (x;w)

]
dx (2.38)

= Ex∼P
[
∂wi logP (x;w)∂wj logP (x;w)

]
(2.39)

Example 2: Fubini-Study metric In terms of quantum mechanics, a common metric in
projective Hilbert space is the Fubini-Study metric. Consider two wavefunctions ψ(w) and
ψ(w′), where w′ = w + dw. We can now define the distance between parameters w and
w′ as the angle between these two wavefunctions.

d(w,w′) = arccos

√
〈ψw|ψw′〉 〈ψw′ |ψw〉
〈ψw|ψw〉 〈ψw′ |ψw′〉

(2.40)

gives the quantum angle between two unnormalized wavefunctions.
By substituting the properties,

|ψw′〉 = |ψw〉+
∑
i

dwi
∂

∂wi
|ψw〉

= |ψw〉+
∑
i

dwi∆̂i |ψw〉

and Taylor expand the denominator, square root, and arccos to the second order. In the
end we would have,

d(w,w′)2 (2.41)

= arccos2
(√

1 +
∑

i dwi 〈∆i〉+
∑

i dw
∗
i 〈∆∗i 〉+

∑
ij dw

∗
i dwj 〈∆∗i 〉 〈∆j〉

1 +
∑

i dwi 〈∆i〉+
∑

i dw
∗
i 〈∆∗i 〉+

∑
ij dw

∗
i dwj 〈∆∗i∆j〉

)
(2.42)

≈ arccos2
([

1−
∑
ij

dw∗i dwj
(
〈∆∗i∆j〉 − 〈∆∗i 〉 〈∆j〉

)]1/2)
(2.43)

≈
∑
ij

dw∗i dwj
[
〈∆∗i∆j〉 − 〈∆∗i 〉 〈∆j〉

]
(2.44)

17

2. Method I: Variational Monte Carlo

Note that we still have the same result if we expend the |ψw′〉 to second order in dw. The
Fubini-Study metric is defined as,

Sij =
[
〈∆∗i∆j〉 − 〈∆∗i 〉 〈∆j〉

]
(2.45)

= Eα∼P=|ψ|2
[
∂w∗i logψ∗(α;w∗)∂wj logψ(α;w)

]
(2.46)

− E
[
∂w∗i logψ∗(α;w∗)

]
E
[
∂wj logψ(α;w)

]
(2.47)

From algorithm 2

.

, SR method could be interpreted as natural gradient descent with Fubini-
Study metric.

Fisher information metric and Fubini-Study metric are of size, Nw ×Nw. For large-scale
optimization problem, the expectation value could not be evaluated exactly. Therefore,
one usually compute the empirical Fisher Information metric or Fubini-Study metric by
stochastic sampling. The natural gradient requires the inverse of the metric, which is com-
putational expensive. One could solve the linear equation approximately or exactly with
iterative solver. See section 2.2.7

.

. One could also make further approximation based on
the structure of the function. For example, assuming statistically independence between
group of variables can lead to block structure in the metric. See section 3.5

.

.
Fubini-Study metric is Hermitian. The symmetric real part defines a Riemannian metric

and the antisymmetric imaginary part defines a symplectic form on the projective Hilbert
space. Fubini-Study metric is also known as the Quantum Geometric Tensor (QGT). Since
it defines a measurement of quantum distance, it is considered as a tool to probe quantum
phase transition related to the concept of quantum fidelity. [6

.

, 102

.

].
Consider a wavefunction described by ψ(x;w) = er(x;w)+iθ(x;w). The probability for

certain state is defined as P (x;w) = |ψ(x;w)|2. Fubini-Study metric has the form [20

.

],

Sij =
1

4
Ex∼P

[
∂w∗i logP (x;w)∂wj logP (x;w)

]
+ E

[
∂w∗i θ∂wjθ

]
− E

[
∂w∗i θ

]
E
[
∂wjθ

]
(2.48)

− iE
[
∂w∗i logP (x;w)∂wjθ − ∂w∗i θ∂wj logP (x;w)

]
(2.49)

In the case when the phase is independent, it is equivalent to four times the classical Fisher
Information metric.

2.2.5. Stochastic Reconfiguration / Time Evolution

Stochastic reconfiguration has a physical interpretation. It is a (stochastic) method for solv-
ing the imaginary time evolution of the wavefunction in the variational subspace, which is
essentially the time-dependent variational principle (TDVP). In this section, we first show
the imaginary time evolution as method for solving ground state. We then formulate the
imaginary time evolution in the subspace spanned by variational parameters.

Imaginary time evolution is related to the power method in solving extreme eigenvalue
problem. The idea of power method is as follows. Assume a positive semi-definite matrix

18

2.2. Variational Monte Carlo algorithm

M has one dominating eigenvalue, λe. By iteratively applying matrix vector multiplication
MNiterv, we can "project" out the unnecessary part of the vector v, that is all the coefficient
in eigenbasis except the one with dominating eigenvalue will be suppressed exponentially
(λi/λe)

Niter , ∀i 6= e. We end up with the eigenvector with extreme eigenvalue.
Unlike power method, where the projection is carried though discrete steps, imaginary

time evolution is the continuous relaxation with differential equation, where the steady
state solution is the ground state.

d |ψ〉
dτ

= −Ĥ |ψ〉 (2.50)

|ψ(τ)〉 = e−Ĥτ |ψ(0)〉 = lim
N→∞

(1− τ

N
Ĥ)N |ψ(0)〉

That is all the coefficients in the eigenbasis except the ground state are again suppressed
exponentially, when we keep the vector normalized.

|ψ(τ)〉 = e−E0τ
[
c0 |E0〉+ e−(E1−E0)τ c1 |E1〉+ . . .

]
Power method is similar to the result of solving the ODE with discretization in time, but

not the same 5

.

. We could not directly work with both two formulation since the physical
dimension is exponentially large. However, this is more than a tautology of the problem.
We will see by formulating in continuous setting, we can derive the same SR equation in
the parameter space which is different from the ODE in the physical space.

We now derive the stochastic reconfiguration formula by solving the linear equation
from imaginary time evolution in the subspace of the variational parameters. First, we
discretize the imaginary time evolution of state by a small time step dτ , which gives

e−dτĤ |ψ〉 = (1− dτĤ) |ψ〉+O(dτ2). (2.51)

Note that the state is not normalized any more. To formulate the equation in parameter
space, we want to find the parameters w′ close to w that represents the imaginary time
evolved wavefunction.

dw0 |ψ〉+
∑
j 6=0

dwj
∂

∂wj
|ψ〉 ≈ |ψ〉 − dτĤ |ψ〉 (2.52)

We find the coefficients dwj with the basis {|ψ〉 , ∂
∂wj
|ψ〉} to represent the wavefunction.

In other word, we solve the above equation in the subspace {|ψ〉 , ∂
∂wj
|ψ〉}. This leads to

equations,

dw0 〈ψ|ψ〉+
∑
j 6=0

dwj 〈ψ|∂wjψ〉 = 〈ψ|ψ〉 − dτ 〈ψ|Ĥ|ψ〉 (2.53)

dw0 〈∂wiψ|ψ〉+
∑
j 6=0

〈∂wiψ|∂wjψ〉 dwj = 〈∂wiψ|ψ〉 − 〈∂wiψ|Ĥ|ψ〉 (2.54)

5One does not need to shift the spectrum to guarantee the positiveness of the matrix. We can make time step
τ very small, while Niter could only be integer.

19

2. Method I: Variational Monte Carlo

Substitute the dw0 in the second equations by expression from first equation. We have,

∑
j

[
〈∆∗i 〉 〈∆j〉 − 〈∆∗i∆j〉

]dwj
dτ

=
[
〈∆∗iH〉 − 〈∆∗i 〉 〈H〉

]
(2.55)

We again obtain the formula of stochastic reconfiguration. In addition, we can easily
obtain the formula for real time evolution in t by replacing τ with it in the equation.

ẇ = −S−1f Imaginary time evolution (2.56)

ẇ = −iS−1f Real time evolution (2.57)

This real time evolution formulation, also known as t-VMC, has been applied to boson
[8

.

, 7

.

], spin system [10

.

], fermionic system [46

.

].
The derivation above is essentially the time-dependent variational principle (TDVP)

principle. We brieftly review TDVP below which based on normalized wavefunction.

ψ̃(τ) =
ψ(τ)√

〈ψ(τ)|ψ(τ)〉

Substituting the normalized wavefunction inside the equation (2.50

.

), we have

d

dτ
ψ̃(τ) = −(Ĥ − 〈Ĥ〉)ψ̃(τ).

In terms of the variational wavefunction with parameters w, this become

∑
i

dwi
dτ

∂

∂wi
ψ̃(τ) ≈ −(Ĥ − 〈Ĥ〉)ψ̃(τ). (2.58)

Minimizing the difference measured in L2 norm,

min
ẇi

∥∥∥∑
i

dwi
dτ

∂

∂wi
ψ̃(τ) + (Ĥ − 〈Ĥ〉)ψ̃(τ)

∥∥∥ (2.59)

gives the best approximate imaginary time evolution in the variational subspace,∑
j

〈∂w∗i ψ̃(τ)|∂wj ψ̃(τ)〉 ẇj = −〈∂w∗i ψ̃(τ)|Ĥ − 〈Ĥ〉 |ψ̃(τ)〉 . (2.60)

Equation (2.60

.

) is known as the TDVP equation, which we usually see in other context, e.g.
TDVP-MPS. It recover the form of SR for unnormalized wavefunction. We could say SR is
the stochastic method for TDVP.

20

2.2. Variational Monte Carlo algorithm

2.2.6. Damping/Regularization and Stepsize

In practice, it is usually consider a good practice to add a damping to the empirical metric.
That is we work with S + λI instead of S, if we are not considering solving the exact time
evolution but only finding the ground state. It is known as the Tikhonov regularization or
Tikhonov damping [53

.

].

Damping (Regularization) in Newton’s method The damping term has various motiva-
tions and interpretations. One motivation comes from the instability of Newton’s method,
which solves the original problem of finding the optimal update with second-order ap-
proximation, i.e.:

M(dw) = E(w0) +∇E(w0)
Tdw +

1

2
dwTHdw. (2.61)

The H is the Hessian of the objective function E. This method with the corresponding
optimal update dwopt = H−1∇E(w0) is known as the Newton’s method. Note that there
is no stepsize in the formula.

The update proposed is usually unstable. One reason might be the Hessian matrix is
ill-conditioned. This usually means some very large and poor update in the direction
corresponds to small eigenvalues. Naively scaling the update dwopt ∗ γ with γ < 1 will
lead to small update for all directions. It is considered better to add a damping term λI
to improve the condition number by increasing the singular values, which corresponds to
remove the large and poor update.

The failure could be understood as that the optimal update is beyond the region where
quadratic approximation could applies. We should modify the approximated problem to
restrict the update proposal. There are two ways to do this: (1) Constrained optimization
method known as the Trust region method. (2) Unconstrained optimization with penalty
for large stepsize. Both methods are closely related.

Trust region method considers a radius r and the region R = {x : ‖x‖ ≤ r}, which
we believe the second-order approximation is reliable, and the constrained optimization is
given as,

arg min
dw:dw∈R

M(dw). (2.62)

The penalty-based unconstrained optimization is the damping method. It is defined as

arg min
dw

M(dw) +
λ

2
‖dw‖2 (2.63)

and gives exactly the damping term if Euclidean distance is considered.
In both methods, optimal choice for r and λ might change throughout the optimization

process. One recommended adjustment heuristic is the Levenberg-Marquardt algorithm.
The third reason damping term appears is because of regularization. If we add an l2

regularization term, i.e. ‖w‖2 to the objective function E(w), we will haveH + λI instead

21

2. Method I: Variational Monte Carlo

of H in the second-order approximation. In this case, the difference is that the ∇E is also
changed.

By observing that large damping bring the update back to gradient descent direction, we
could also interpret damping as mixing the gradient descent and natural gradient descent.

Damping (Regularization) in SR Natural gradient defined the optimal direction for in-
finitesimally small step. However, in practice, the natural gradient optimization considers
update with finite stepsize like,

w(k+1) ← w(k) − γk∇̃E(wk). (2.64)

The design of scheduling of stepsize is usually based on heuristic. We discuss it in next
part. Aside from the difficulty of choosing suitable stepsize, we consider the natural gra-
dient as the optimal update from the quadratic form,

M(dw) = E(w0) +∇E(w0)
Tdw +

1

2γ
dwTSdw. (2.65)

We could see this as a different second-order approximation to E(w0 + dw). Indeed, in
many machine learning setting, the Hessian and the metric are often related or share the
same form [65

.

]. The optimal update with finite stepsize fail whenever M(dw) fails to be
a good local approximation to E(w0 + dw). By making this connection, all the arguments
for Newton’s method could apply here.

The damping term is for improving condition number, which has another important
effect of improving the convergence speed in CG iterative solver. It is also understood as
penalty term to restrict the updates, the l2 regularization and the mixing of gradient and
natural gradient descent.

Stepsize with SR It is often tricky to design a good scheduling for stepsize with natural
gradient. Adding a damping term might also affect the optimal scheduling. Non-adaptive
scheduling like γk = c/k for some constant c might work. In [26

.

], they suggest a non-
adaptive scheduling as γk = c/

√
k with large damping in the beginning of VMC optimiza-

tion for neural network quantum state. They also point out that it also works with fixed
stepsize while having a small damping ranging from 10−4 to 10−8 for several runs. More
complicated scheduling is described in [63

.

].
We suggest to adopt the scheduling of stepsize with trust region argument, which sug-

gest to measure the step in Fubini-Study norm and determine the stepsize by

min(δ0,

√
δ

dθT gdθ
).

δ0 and δ are hyperparameters to tune and could be kept constant or combined with an-
nealing scheduling.

22

2.2. Variational Monte Carlo algorithm

2.2.7. Computational Complexity

Expectation value of observable: For sparse operators, the expectation value could be
compute at the cost of O(NMCNCeval), where N is the system size, NMC the number of
independent Monte Carlo samples and Ceval the cost of evaluation of the amplitude.

We first run the MCMC to obtainNMC independent MC samples. This would cost about
O(NMCNCeval), where we assume the auto-correlation length is of order N . After having
NMC Monte Carlo samples, we could compute the expectation of the sparse operator with
the cost O(NMCNCeval), where the N now comes from the non-zero elements per row of
the operator.

For the neural network quantum state we consider in this thesis, the Ceval is of O(N2)
from the matrix-vector multiplication. This gives the overall complexity of O(NMCN

3),
which is cubic to the system size. Note that this is independent of the dimension of the
problems. As a result, VMC has advantages for computing higher dimensional problem.

First-order methods: With the independent MC samples given, we can computer the
derivative with the cost O(NMCCgrad). For the neural network quantum state, the cost for
computing the derivative Cgrad is about the same as evaluation of amplitude Ceval.

For first order method, the computational cost is dominated by the generation of inde-
pendent MC sample and the computation of the local energy.

Second-order methods: For large number of parameters, the cost for second-order meth-
ods is bound by the cost of solving the system of linear equations.

The metric S is of the size Nw × Nw. Explicit inversion would cost ≈ O(N3
w). Iterative

solver with matrix explicit formed would still cost ≈ O(N2
w). This limit the number of

variational parameters to be atmost O(104). To exploit the expression with larger number
of parameters, different approaches were developed in both physics and machine learning
community 6

.

. In the following, we review different approaches based on generic or specific
variational functions.

General methods for all variational functions:

• Iterative solver: Eric Neuscamman et al. [61

.

] consider the Conjugate Gradient (CG)
method. Giuseppe Carleo et al. [9

.

] consider the MINRES-QLP mthod.

The idea is based on that we are always approximating the metric by sampling.
Therefore, the metric matrix would be low rank. One should not form the ma-
trix explicitly, but should store the unaggregated derivative as M , which is then of
size NMC × Nw. The linear equations could be solved with iterative solvers and
the matrix vector multiplication defined as MT (Mf). The cost is reduced to only
≈ O(NwNMC). The cost of storage and computation is linear with respect to Nw.

6For review article see [65

.

]. However, it does not include methods recent developed. We give a brief review
of a new method named K-FAC [54

.

] in section 3.4

.

and 3.5

.

.

23

2. Method I: Variational Monte Carlo

This is the main approach adopted in this thesis.

• Diagonal approximation of the metric Adam, RMSprop, Adagrad. No better than
well-tuned SGD, SGD with momentum.

• HF, Krylov Subspace method

Methods designed for specific variational functions:

• TDVP-MPS The TDVP algorithm in the context of matrix product state (MPS) is a
deterministic algorithm that solve the TDVP equation by exploiting the gauge free-
dom in matrix product states [33

.

, 34

.

]. It not only could scale up to > 106 number of
parameters, but it solve it exactly. However, the application to system of dimension
d ≥ 2 is limited because of the exponential growing of bond dimension in MPS.

• K-FAC, TONGA, KFRA These are method developed for neural network to approx-
imate the empirical Fisher information metric. K-FAC: Comparing to iterative solver,
e.g. CG, it works with the approximate metric and inverse metric by tensor decom-
position. The most crucial advantage of this method is it can keep a moving average
of the metric. It reuse the information from sampling in previous updates.

One disadvantage of iterative solver is that with too many sampling, the cost ≈
O(NwNMC) would be too expensive even for truncated iteration. But without enough
sampling, the approximation to the metric is too crude such that we might not get
the benefit of using second-order methods.

It is clear that by keeping the history of the metric, we can work with smaller number
of sampling per update, which is crucial to scale up to large number of parameters.

We give a comparison for the difference in VMC, supervised learning and reinforcement
learning in section 3.4

.

2.2.8. Fidelity and Entanglement

We showed that VMC could compute sparse Hermitian operator. In this section, we show
that we can also compute the fidelity between two wavefunctions and the Renyi-2 en-
tropy by using the replica-trick. The formulas are similar that we need to sample from
independent distribution, which could be easily implemented with two independent MC
sampling.

Fidelity (overlap) between two pure states, ψ1, ψ2, is defined as,

F(|ψ1〉 , |ψ2〉) =

√
〈ψ1|ψ2〉 〈ψ2|ψ1〉
〈ψ1|ψ1〉 〈ψ2|ψ2〉

(2.66)

24

2.2. Variational Monte Carlo algorithm

Fidelity is a quantity we can check for the closeness of two wavefunctions we obtained.
It also act as a reasonable objective in supervised learning.

We can compute the inner products between two wavefunctions inside the square root
by sampling from these two wavefunctions at the same time.

〈ψ1|ψ2〉 〈ψ2|ψ1〉
〈ψ1|ψ1〉 〈ψ2|ψ2〉

=
[∑

σ

| 〈σ|ψ1〉 |2

〈ψ1|ψ1〉
〈σ|ψ2〉
〈σ|ψ1〉

][∑
σ′

| 〈σ′|ψ2〉 |2

〈ψ2|ψ2〉
〈σ′|ψ1〉
〈σ′|ψ2〉

]
(2.67)

=
∑
σ

∑
σ′

P1(σ)P2(σ
′)
〈σ′|ψ1〉
〈σ|ψ1〉

〈σ|ψ2〉
〈σ′|ψ2〉

(2.68)

where σ,σ′ are sample from P1, P2.

Renyi-2 entropy. The Renyi entropy is defined as,

Sα(|ψ〉) =
1

1− α
ln TrραA (2.69)

, where ρA is the reduced density matrix of subsystemA from tracing out subsystemB of a
bipartite system. The Renyi entropy recover the von Neumann entropy in the limit α→ 1.

We will show that we could actually calculation the Renyi-2 entropy by introducing a
SWAP gate [37

.

, 98

.

].
S2 = − ln Tr(ρ2A) = − ln (〈SWAP〉) (2.70)

Consider a system to be divide into two regionsA andB with complete basis |α〉 and |β〉.
The wavefunction in these basis is given by ψ =

∑
α,β |α〉 |β〉 〈α, β|ψ〉. The Swap operator

act on the tensor product of two wavefunctions and is defined as

SWAPA
(∑
α1,β1

|α1〉 |β1〉 〈α1, β1|ψ〉
)
⊗
(∑
α2,β2

|α2〉 |β2〉 〈α2, β2|φ〉
)

(2.71)

=
∑
α1,β1

|α2〉 |β1〉 〈α1, β1|ψ〉
∑
α2,β2

|α1〉 |β2〉 〈α2, β2|φ〉 (2.72)

Now we have,

〈ψ ⊗ ψ|SWAPA|ψ ⊗ ψ〉
〈ψ|ψ〉 〈ψ|ψ〉

=
∑

α1,β1,α2,β2

C∗α2,β1C
∗
α1,β2Cα1,β1Cα2,β2 (2.73)

=
∑
α1,α2,

(ρA)α1,α2(ρA)α2,α1 (2.74)

= Tr(ρ2A) (2.75)

25

2. Method I: Variational Monte Carlo

where the Cα,β is the normalized probability amplitude. To calculate this quantities nu-
merically, we have to compute,

〈ψ ⊗ ψ|SWAPA|ψ ⊗ ψ〉
〈ψ|ψ〉 〈ψ|ψ〉

=
∑

α1,β1,α2,β2

〈ψ|α2, β1〉 〈ψ|α1, β2〉 〈α1, β1|ψ〉 〈α2, β2|ψ〉
〈ψ|ψ〉 〈ψ|ψ〉

(2.76)

=
[∑
α1,β1

| 〈α1, β1|ψ〉 |2

〈ψ|ψ〉
〈ψ|α2, β1〉
〈ψ|α1, β1〉

][∑
α2,β2

| 〈α2, β2|ψ〉 |2

〈ψ|ψ〉
〈ψ|α1, β2〉
〈ψ|α2, β2〉

]
(2.77)

=
∑
σ

∑
σ′

P (σ)P (σ′)
〈σ̃|ψ〉
〈σ|ψ〉

〈σ̃′|ψ〉
〈σ′|ψ〉

(2.78)

where σ = (α1, β1),σ
′ = (α2, β2), σ̃ = (α2, β1), σ̃

′ = (α1, β2). The above calculation is
known as the replica-trick.

2.3. Trial wavefunctions

As from equation (2.2

.

), the function form, which comes from our prior knowledge, encodes
the underlying physical properties of the state.

In this section, we review the wavefunctions that are used most in spin system and are
related to Restricted Boltzmann Machine (RBM). They are EPS/CPS, SBS [26

.

] and MPS
[12

.

]. We then introduce the RBM as wavefunctions. In the end, we give the formulation
for neural network wavefunction as a generalization of RBM wavefunction.

2.3.1. Matrix Product States (MPS)

MPS is defined as,

ψ(σ) = Tr
(N∏
i=1

Aσii

)
, (2.79)

where eachAσii at site iwith spin σi is independent matrix. The largest rank of the matrices
is denoted as D, the bond dimension of the MPS. The tensor Aσii itself is referred to as the
core tensor.

Computational Complexity: Memory : O(NdD2). Evaluating amplitude : OBCO(ND2)
PBC O(ND3)

2.3.2. Entangled Plaquette States (EPS), Correlator Product State (CPS)

EPS/CPS is defined as

ψw(σ) =
P∏
p=1

C
σp
p . (2.80)

26

2.3. Trial wavefunctions

The wavefunction is constructed by the product of amplitude on P plaquette, where each
plaquette is a subset of the lattice σp ⊂ σ, and Cσp

p is a general vector in the Hilbert space
corresponding to the plaquette p. As a result, the size of plaquette is usually chosen to be
small since the coefficient in this subspace again grows exponentially [25

.

, 57

.

, 11

.

]. A typical
example is the Jastrow wavefunction for spin system, which could be viewed as an two
site correlator product state,

ψw(σ) =
∏
i<j

fij(σi, σj).

Another format which is useful in some context, is to write the correlator as diagonal
operator in computational basis,

〈σi, σj , . . . |Ĉσi,σj ,···|σi′ , σj′ , . . .〉 = δσi,σi′ δσj ,σj′ . . . C
σi,σj ,··· (2.81)

The EPS/CPS is defined with a reference state |Φ〉,

|Ψ〉 =

P∏
p=1

Ĉ
σp
p |Φ〉 (2.82)

A common choice of reference state is the combination of all product states |Φ〉 =
∑

σ |σ〉,
one recover the original definition, i.e. equation (2.80

.

). The operator representation is use-
ful in fermionic system, where one could take the free fermion as the reference state. In
fact, it is equivalent to Jastrow-Slater wavefunctions. The Jastrow factor is the same as the
correlator except that it is parameterized in exponential form. The Jastrow-Slater wave-
function for fermion system is obtained by applying the Jastrow factor on the reference
state, which is a Slater determinant of some orbitals.

|Ψ〉 = Ĵ |ΦD〉 (2.83)

Ĵ = exp(c+
∑
i

cin̂i +
∑
i,j

ci,jn̂in̂j + · · ·) (2.84)

|ΦD〉 = det[φ1φ2 · · ·φN] (2.85)

The term EPS and CPS is used interchangeably. In many context, EPS is based on a short-
range plaqquete, and hence the term Entangled Plaquette States. CPS is with long-range
correlators but it could also be with local correlators or plaquettes. Therefore, we simple
refer them as EPS/CPS.

Physical argument:

• EPS/CPS without overlapping plaquettes describe the many-body states in a mean-
field fashion, while correlation is included once the plaquettes overlapped.

• EPS/CPS associate variational degrees of freedom directly with correlations between
groups of sites.

27

2. Method I: Variational Monte Carlo

• EPS/CPS are complete in the limit when the size of plaquette/correlator become the
system size.

• EPS/CPS contains Laughlin wavefunction, Toric code, RVB wavefunction.

• EPS/CPS with local correlators satisfy area law. EPS/CPS with long-range correla-
tors may give volume law entanglement.

Computational Complexity: The state can be obtain stochastically and non-stochastically.

Example: We give two example of EPS/CPS expressing topological order state.
Ground State of 2d Toric Code Model

C
σi,σj ,σk,σl
� =

{
1, if σi + σj + σk + σl = 0 mod 2
0, if σi + σj + σk + σl = 1 mod 2

(2.86)

For generalization in higher dimension, see [38

.

].
Laughlin wavefunction is proposed to describe fractional quantum Hall effect. At fill-

ing fraction 1/m, the wavefunction is given as,

ψ(z1, . . . , zN) =
[N∏
λ<µ

(zλ − zµ)m
]∏

i

e−α|zi|
2

(2.87)

If we restricted the wavefunction on a lattice of L sites and associate each zi the occupa-
tion number σi, then we would have

|ψ〉 =
∑
σ

∏
i

Cσi1
∏
i<j

C
σi,σj
2 P̂N |σ1, . . . , σL〉 (2.88)

where

C1 =

(
1

e−α|zi|
2

)
(2.89)

C2 =

(
1 1
1 (zi − zj)m

)
(2.90)

Mapping between MPS and EPS/CPS We give a brief comment on the connection be-
tween MPS, PEPS and EPS/CPS. Following [69

.

], we could view MPS and PEPS as EPS
with auxiliary sites, and also we can rewrite EPS as TNS with copy gate.

28

2.3. Trial wavefunctions

2.3.3. String-Bond States (SBS)

String-Bond States are usually defined in d ≥ 2 systems.

ψw(σ) =
∏
m

ψmMPS(σm) (2.91)

=
∏
m

Tr
(Nm∏
i=1

Aσim,i

)
(2.92)

To avoid the exponential growth of dimension with the size of plaquette and to retain
the flexibility of the wavefunction, one can combine the idea of EPS/CPS, and MPS. By
parametrizing the strings σm ⊂ σ that cover the lattice with MPS and construct the wave-
function by the product of the amplitude of each string [76

.

, 78

.

].

String-bond states are complete. The completeness is in the sense that one could have a
long snail-like string covering the lattice, and because MPS are complete with large enough
bond dimension, SBS are therefore complete.

In general, the core tensors in MPS are not commutable. The order of how the string
goes through the lattice matters. It is argued in the paper[78

.

], that the strings should
reflect the geometry of the system in a way that strings first goes through sites that are
closely coupled by the Hamiltonian.

Physical argument: One can view SBS as subset of EPS/CPS, where the plaquettes still
cover the physical lattice but are parametrized in MPS form. Another way to view this
is by considering the MPS in EPS/CPS form, which introduces the local auxiliary sites.
SBS are then an factorized form of PEPS, where the plaquettes are furthere decomposed
as smaller plaquettes. Therefore, SBS form a subset of PEPS. One should note that, like in
EPS/CPS, it is in principle possible to construct SBS with volume law entanglement. If the
string goes through the lattice in some random patterns, it is possible that bipartite will
cut through bond linking to every other sites in the other part. For detail, see arguments
in [16

.

]
Computational complexity: For evaluating each string ψw(σ), the computational cost is
O(MND2) (O(MND3) for PBC) , whereM is the number of string andD the bond dimen-
sion. This is favorably cheap comparing to PEPS. Note that comparing to snake DMRG,
the bond dimension D is much smaller.

29

2. Method I: Variational Monte Carlo

2.3.4. Restricted Boltzmann Machine Quantum State (RBMQS)

A Restricted Boltzmann Machine is defined as,

ΨRBM (σ;W) =
∑
{hi}

e
∑
j ajσj+

∑
i bihi+

∑
ijWijhiσj (2.93)

= e
∑
j ajσj ×

[∑
{hi}

e
∑
i hi(bi+

∑
jWijσj)

]
(2.94)

= e
∑
j ajσj ×

N∏
i=1

Fi(σ) (2.95)

where

Fi(σ) =

{
2cosh[bi +

∑
jWijσj], if hi = ±1

1 + exp[bi +
∑

jWijσj], if hi = 0, 1
(2.96)

Just like any other machine learning algorithm, RBM is used to learn the probability
distribution, which means the function value is real and always equal or larger than zero.
Giuseppe Carleo et al. [9

.

] proposed to represent probability amplitude by RBM by gener-
alizing the parametersW = {W ,a, b} to complex numbers.

In machine learning community, the convention is usually with hi, σj ∈ {0, 1}, while in
the original work of RBMQS, it is chosen that hi, σj ∈ {−1, 1}. This ensures the spin-flip
symmetry. By setting the one-body terms to zero aj = 0, we have an invariant wavefunc-
tion with respect to total spin-flip. However, in this thesis, we choose the {0, 1} convention.

Restricted Boltzmann Machine as Entangled Plaquettte States/Correlator Product States:
The wavefunction is composed of two part, the one-body term and the plaquette term.

ΨRBM (σ;W) =
∏
j

eajσj
N∏
i=1

Fi(σ) (2.97)

=
∏
j

C
σj
1

∏
i

Cσi
ki

(2.98)

The order of the i-th plaquette is denoted by ki, which is determined by the non-zero
connection Wij . So, short-range RBMQS are EPS/CPS. Strictly speaking, RBMQS are not
exactly EPS/CPS if one defined EPS/CPS as product of exact vectors in subspaces. Each
of the Fi does not parametrize the whole subspace. Short-range RBMQS is only a subset of
EPS/CPS. In fact, the way it parametrizes the subspaces is equivalent to MPS in SBS, [26

.

].

30

2.3. Trial wavefunctions

Restricted Boltzmann Machine as String Bond State: Aside from the one-body term,
the rest of the wavefunction is given by 7

.

,

ΨRBM (σ;W) ∼
N∏
i=1

Fi(σ) (2.99)

∝
∏
i

(exp[−bi −
∑
j

Wijσj] + exp[bi +
∑
j

Wijσj]) (2.100)

∝
∏
i

Tr

(
e−bi−

∑
jWijσj 0

0 ebi+
∑
jWijσj

)
(2.101)

∝
∏
i

Tr
(∏
j∈I

A
σj
i,j

)
(2.102)

where

A
σj
i,j =

(
e−bi/N−Wijσj 0

0 ebi/N+Wijσj

)
(2.103)

and I being the set of indices in i-th plaquette.
There are several differences between traditional SBS and RBM. Note the for RBM the

core tensor in the MPS parametrizing the plaquette has bond dimension 2, and only diag-
onal elements in the matrices. We denote the two free parameters as ebi/N = β, eWij = ω.
This gives

A
σj=−1
i,j =

(
β−1ω 0

0 βω−1

)
, A

σj=1
i,j =

(
β−1ω−1 0

0 βω

)
. (2.104)

Following the same derivation for {0, 1} convention, we have instead,

A
σj=0
i,j =

(
1 0
0 β

)
, A

σj=1
i,j =

(
1 0
0 βω

)
(2.105)

Again, this again shows a different parametrization for diagonal matrix product state.
For each core tensor, the degree of freedom is only 2. Therefore, RBM is a subset of SBS
with special parametrization.

The diagonal core tensor implies there is no fixed ordering for the MPS on each string.
Strings in traditional SBS are shorter and do not cover the full lattice. In [26

.

], Glasser et al.
name these SBS covering the full lattice with only diagonal element in MPS as non-local
dSBS. For SBS covering the full lattice with general MPS, it is named as non-local SBS. They
further generalized the wavefunction to bond dimension D = 3, with matrices,

A
σj
i,j =

aσji,j 0 0

0 b
σj
i,j 0

0 0 c
σj
i,j

 (2.106)

7Here the {−1, 1} convention is used. Derivation applies to {0, 1}.

31

2. Method I: Variational Monte Carlo

This leads to wave function as,

Ψnon-local dSBS(σ;W) =
∏
i

(∏
j

a
σj
i,j +

∏
j

b
σj
i,j +

∏
j

c
σj
i,j

)
(2.107)

Their numerical results for Laughlin state suggest that EPS is preferred to short-range
RBM. (Easier to optimized in terms of numerical stability) Fully-connected RBM give good
results. For chiral spin liquid, they show that RBM work better than local SBS, non-local
dSBS, EPS and Jastrow wavefunction with and without projected reference states.

Restricted Boltzmann Machine as Feed-Forward Neural Network: In the following, we
show that RBM can be casted as a feed-forward neural network with restricted structure.
Consider the case with hi, σj ∈ {0, 1}, omitting the one-body terms, we rewrite the product
over Fi as,

ΨRBM (σ;W) ∼
N∏
i=1

Fi (2.108)

= exp
[∑

i

log(1 + ebi+
∑
jWijσj)

]
(2.109)

= exp
[∑

i

f(bi +
∑
j

Wijσj)
]

(2.110)

The function f(x) = log(1 + ex) is the so-called softplus activation, which could be
consider as the continuous version of rectified linear unit. See figure 3.2

.

. The argument
inside the softplus function is an affine maping from the spin configuration. Therefore,
we can view the RBM as a one-hidden layer feed-forward neural network with softplus
activation, sum pooling, exponential function at output unit and an additional bias term
that we leave out in the above discussion.

By viewing RBM as feed-forward neural network, we have several advantages. (1) We
can generalized the wavefunction by adding additional hidden layers. The complexity of
the wavefunction can be controlled by not only the width but the depth of the network. (2)
With one-hot encoding, we can generalize wavefunction to larger physical dimension, e.g.
spin-1 system. This is different from the naive generalization of RBM or the generalization
in dSBS.

In the following section, we show how to generalize RBMQS. For the motivation and
detail of neural networks see 3.3

.

.

2.3.5. Neural Network Quantum State (NNQS)

From equation (2.2

.

), the function is defined on the finite set. Since neural networks take
real numbers as input, an naive approach would be taking the configurationσ ∈ {0, . . . , d−
1}N , i.e. indices for tensor, as input. However, one should note that there is no concept of

32

2.3. Trial wavefunctions

"magnitude" for categorical data. A dog is not larger than a cat by one and so is the spin-up
particle to spin-down particle. They are simply different objects. By encoding the d-level
system with magnitude, 0, . . . , d− 1, one introduces bias. An unbiased way to encode the
categorical input is the one-hot representation.

X : σ ∈ {0, . . . , d− 1}N −→ X(σ) ∈ RN×d (2.111)

X(σ)ij =

{
1, if σi = j
0, else

(2.112)

One-hot encoding is sparse. This may be problematic if d is large, e.g. for word embed-
ding in Natural Language Processing. For spin model and fermionic system in physics, d
is typically not too large. However, for bosonic system, cutoff should be introduced.

Feed-forwad neural networks are neural networks with no loop connections. It could
contain fully-connected layers and convolution layers. Fully-connected layers are layers
with weight matrices that determine the affine transformation.

A general k-layers fully-connected feed-forward neural network quantum state can be
described as,

ΨNN (σ;W) = g(out)(b(out) +W (out)g(k)(b(k) +W (k)g(k−1)(. . . g(1)(b(1) +W (1)Vec(X(σ))))))
(2.113)

It is easier to read from the layer-wise expansion (3.10

.

).
We denote the vectorization of the one-hot representation of spin configuration X(σ)

as Vec(X(σ)). The variational parameters are related to the affine transformation in the
intermediate layers W = {b(i),W (i)}. In general, the nonlinear activation function could
be different for different layers. In practice, we choose the same activation throughout the
network, but with the last activation function chosen as exponential function.

For complex weight, we set the output dimension of the last weight matrixW (out) as one,
and interpret the output after the exponential function as the probability amplitude of the
wavefunction. For real-valued weight, we set the output dimension of the last weight
matrix W (out) as two and interpret them as the log magnitude and the phase.

2.3.6. Convolutional Neural Network Quantum State (CNNQS)

Like fully-connected neural network, the convolution layer is define by the convolution
kernel and convolution operation. By replacing the affine transformation with the convo-
lution operation,

z = b+W × x −→ z = b+W ∗ x

we now have the convolutional neural network quantum state.

ΨCNN (σ;W) = g(out)(b(out) +W (out) ∗g(k)(b(k) +W (k) ∗g(k−1)(. . . g(1)(b(1) +W (1) ∗X(σ)))))
(2.114)

33

2. Method I: Variational Monte Carlo

Again, it might be easier to read from the expansion (3.14

.

).
Note that we no longer need to vectorize the one-hot encoding. The physical dimension

d is now regarded as different channels in the input. For example, a two dimensional spin-
1 chain will have the same form as input as an image with RGB channels. We will see an
example of translational-invariant RBM as CNN in the next section.

In general, a convolutional neural network could include fully-connected layers, pool-
ing layers and even shortcut connection. Convolutional neural networks without fully-
connected layers are called fully convolutional network (FCN). The detail of the convolu-
tional neural network and the derivative with respect to the weights in neural networks
are discussed in section 3.3

.

.
Computational complexity: For evaluating the amplitude, we need to compute roughly

k+1 matrix-vector multiplication. This gives the computational cost and storage asO(kN2),
where k is the depth of network and N the system size. The cost for derivative and log
derivative are also about the same.

2.3.7. Symmetry and Invariance

In general, for building wavefunction respecting certain symmetries, we should write
down a function that pick up a phase under certain transformation. However, this re-
striction is sometimes too strong. For the simplicity of the designing the network and
the feasible optimization, we only require the wavefunction to be invariant after certain
operation. This is a weaker condition comparing to exploit the full symmetry.

Given a unsymmetrized function f(x) and a symmetry transformation g : x→ g(x), one
naive way to symmetrized the function is by

fs(x) =

Ng−1∏
i=0

f(g(i)(x)), or fs(x) =

Ng−1∑
i=0

f(g(i)(x)), (2.115)

where g(i) = g ◦ · · · ◦ g︸ ︷︷ ︸
i times

and g(Ng) = 1 with g keep applying till the transformation gives

the identity. The above formula contains two crucial steps. First, one need to create a set
of equivariant input {x, g(x), g(2)(x), . . . , g(Ng−1)(x)} The set is invariant under symmetry
transform, but each individual element is not invariant under symmetry transform.

{x, g(x), g(2)(x), . . . , g(Ng−1)(x)} → {g(x), g(2)(x), . . . , g(Ng−1)(x), x} (2.116)

Then, we could see one construct a symmetrized function by applying a invariant opera-
tion over the set.

The method above symmetrizes the function regardless the structure of the function. It is
simple but comes with disadvantages like redundancy in parametrization of the function
and greater expense in computation cost. [17

.

] A better way of encoding symmetry would
be to construct the function with equivariant operations in intermediate stages and an
invariant operation in the end.

34

2.3. Trial wavefunctions

2.3.8. Translational Invariant Restricted Boltzmann Machine

One might already see that to symmetrize RBM wavefunction, we only need to force the
Fi and the bias term to be equivariant, since we have products in the end.

In other words, we want

{Fi(v)} = {Fi(g(v))} (2.117)

We show in the following a way to satisfy the requirement above. We first set the number
of hidden units as Nh = Ng ×Nc, Nc ∈ N. Then we relabel Fi as F ci where i ∈ [0, . . . , Ng −
1], c ∈ [0, . . . , Nc − 1]. Now if we have

GF ci (v) = F ci (g(v)) (2.118)

where G is the corresponding transform for function F ci , and map it to another element
in the set {F c0 , . . . , F cNg−1}. We would have Nc equivariant sets of functions F . Here we
choose G such that GF ci (v) = F c(i+1)(v).

Example: Periodic Boundary Condition If a N sites system has a periodic boundary
condition, and the Hamiltonian is l-site translation invariant, i.e. [H, gl] = 0 and g

N/l
l = 1.

Therefore, the eigenstates can be labeled by a quantum number n ∈ [1, . . . , N/l], which
corresponds to a phase glψ = exp(2πnl/N)ψ and that the wavefunction is invariant after
N/nl transformation.

We consider relaxing the constraint of the wavefunction, such that the function does not
necessarily pick up a phase, but is invariant after N/nl transformation.

Recall,

Fi(σ) =

{
2cosh[bi +

∑
jWijσj], if hi = ±1

1 + exp[bi +
∑

jWijσj], if hi = 0, 1
(2.119)

we want to find a constraint on Wij , bi so equation (2.118

.

) is satisfied.
By requiring,

bi+1 +
∑
j

Wi+1,jσj = bi +
∑
j

Wijσj+l (2.120)

One solution is given,

bi = bi+1 (2.121)
Wi,j = W(i+1),(j+l) (2.122)

i ∈ [0, . . . , Ng − 1], Ng = N/nl (2.123)

As we will see later, this restrict the W to be a convolution operation with stride l.

35

2. Method I: Variational Monte Carlo

The symmetrized wavefunction gives,

Nc∏
c=1

Ng∏
i=1

F ci = exp
[∑

c

∑
i

log(1 + eb
c
i+

∑
jW

c
ijσj)

]
(2.124)

= exp
[∑

c

∑
i

f(bc +W c
i ∗ σ)

]
(2.125)

We can view the symmetrized wavefunction in two different aspects.
From the aspect of machine learning, there are some things that need to notice about

the convolution in the formula above. It is a stride-l circular convolution. That means one
need to pad the input periodically. This is quite different from how convolution is usually
performed. In fact, zero-padding does not provide exact translational equivariant. In most
of the scenario in deep learning, e.g. Computer Vision, translational equivariance is not
the actual concern. However, in terms of physics, the system size is usually small and the
error is not negligible.

We now see, with the analogy to convolutional neural network, one can easily generalize
the formula to physical system in higher dimensions or higher spin numbers. In addition,
it provides another way to systematically increasing the complexity of the wavefunction
by going "deeper".

36

3. Method II: Machine Learning

3.1. Supervised Learning

In short, supervised learning is an optimization problem of finding the best approximated
function mapping h(x;w) between the given the training data with input x and output
label y. By showing the machine enough example of the (x, y) pairs, the goal is that the
machine could learn to find the relation between x and y not by remembering the data. We
give a brief summary about the statistical framework of supervised learning theory below.

Input Space X : with elements x ∈ X . Input x is usually a vector, e.g. Rd. More general
input, e.g. tensor, graph, could also be possible.

Output Space Y : with elements y ∈ Y . Output y may be continuous or discrete. This
leads to two different types of learning problems. The regression problems deal with
continuous output space Y , e.g. y ∈ R. The classification problems deal with discrete
output Y , e.g. y ∈ {0, 1}.

Input Data / Training Data of the learner is the set D = {(x(1), y(1),), ..., (x(n), y(n))}
where x ∈ X , y ∈ Y , D ∈ (X × Y)n

The Hypotheses Set H could be a finite or infinite set of functions with element h ∈
H : X 7−→ Y . The goal of supervised learning is to find the optimal hypotheses, which
should correctly predict y by h(x) given x, after seeing the training data. In other words,
supervised learning is a map D → YX . In most case, we consider the hypothesis set
parametrized by parameters w.

Probabilistic assumption Assume there is some unknown probability measure P over
X × Y , resulting in identically and independently distributed random variables (xi, yi).
Note this is a weaker assumption than assuming there is a deterministic mapping between
(x, y) = (x, f(x)). The expectations with respect to P is denoted by E.

Loss function and Risk function To formulate an optimization problem, we define the
loss function L : Y × Y → R, which measures how far h(x) is from the true label y. For
a regression problem, the simple choice of loss function is the square loss L(y, h(x)) =
|y − h(x)|2. The risk, a.k.a. cost function, is the average error of the full distribution,
defined by,

R(h) =

∫
X×Y

L(y, h(x))dP (x, y). (3.1)

The optimization problem is to find the hypothesis that gives the lowest error, i.e. risk
function. However, the underlying probability distribution is unknown. The only esti-
mate we could have for the probability distribution is from the training data in our hands.

37

3. Method II: Machine Learning

Therefore, the empirical risk (in-sample error, training error) is defined as,

R̂(h) =
1

N

N∑
i=1

L(yi, h(xi)). (3.2)

The training (learning) ends with the learner (algorithm) returning the optimal hypothesis
that minimizes the empirical risk.

Empirical Risk Minimization (ERM). The whole framework of supervised learning is
based on minimization of the empirical risk, which is the "surrogate" of the true risk func-
tion. The price one has to pay is the discrepancy between the empirical risk and the true
risk, i.e. R(h)− R̂(h). This is known as the generalization error. A good learning happens
when we have low empirical risk and also low generalization error. Simply remembering
or over-fitting the training data would lead to low empirical risk but could not work well
on new data given, thus not being able to generalize.

One of the main focus of learning theory is the mathematical study about how to de-
termine an accurate bound for the generalization error for the hypothesis set given [58

.

,
79

.

, 100

.

]. Here we give an example of typical theorem in Probably Approximately Correct
(PAC) learning framework without proof. For an binary classification problem on a hy-
pothesis set F ⊆ {−1, 1}X . For some small δ, ε ∈ (0, 1], and with 0/1 loss, then ∀h ∈ F , we
have |R̂(h)−R(h)| ≤ ε holds over repeated sampling with probability at least 1− δ, if the
sampling size |D| ≥ νF .

νF (ε, δ) = Θ
(V Cdim(F) + ln(1δ)

ε2

)
V Cdim is the Vapnik-Chervonenkis dimension that measures the capacity of the function
class, which is roughly the degree of freedom of the function considered.

By the theorem, the number of samples we need to have, in order to guarantee the
generalization, grows with the complexity of the model, the smaller generalization bound,
and the probability we stay in the bound. It tells us qualitatively how many sampling
we need have in order to have an accuracy we need. It could also tell us how accurate
the model can be given the size of training data. This formulation gives a mathematical
explanation for phenomena, like over-fitting.

Similar theorems exist in multi-label or continuous output space. It could explain why
machine learning could work well with a low empirical risk. However, in general, the
number of samples require for certain bound is usually way higher than the number of
samples needed in practice. This is one aspect of the common argument, "we do not un-
derstand machine learning (deep learning)".

Validation error and test error. In practice, we usually keep separate all the data we
have into training data D, validation data DV and test data DT . The validation data and
test data could be viewed also coming from the underlying unknown probability distribu-

38

3.2. Linear Model

tion P . We define the validation error R̂V and the test error R̂T as

R̂V (h)
.
=

1

|DV |
∑

(x,y)∈DV

L(y, h(x)) (3.3)

R̂T (h)
.
=

1

|DT |
∑

(x,y)∈DT

L(y, h(x)). (3.4)

The test data serves as a mean to estimate the true risk since it is not seen in the training
process and is statistically independent from the training data. In principle, we can also
give a generalization bound from test error, but in practice we simply rely on and report
the test error.

The validation data is kept for an intermediate stage of learning. Usually, there is some
free parameters in the learning process that would affect the final outcome, which we call
them the hyperparameters. To tune this hyperparameters, we need some "test data", which
is now the validation data. In order to keep the test data statistically independent from the
learning process, we separate the data into three parts.

Regularization. Based on the trade-off between model complexity and generalization
error, we could argue there should be an optimal model complexity for the chosen problem
such that it gives the lowest true risk. One solution would be to consider a sequence of
hypotheses sets H1 ⊂ H2 ⊂ ... with increasing complexity. After minimizing risk function
with models of different complexity, we could check the validation error and determine
the optimal model complexity.

One simpler solution for this is to add a complexity penalty term to the risk function.
Then, we minimize instead the regularized empiricial risk

R̂(h) +
λ

2
‖Aw‖2 (3.5)

where A is usually the identity. The free parameter λ should be determined by validation
error.

3.2. Linear Model

Below, we formulate the problem of linear regression in the language of supervised learn-
ing.

Linear Regression: Linear regression is a regression problem with input vector xT ∈ Rd
and continuous output y ∈ R.

The input data is denoted as X ∈ RN×d, where each row is a data vector, and labels
y ∈ RN . Assuming a linear relation between the label and the input, h(x;w) = xTw, this
gives us a linear model with parameters w. 1

.

1Note that we omit the bias term in the model. Instead of wTx+ b, we could always append one in the input
data. The bias term is absorbed into the weights by changing xT → [1,xT].

39

3. Method II: Machine Learning

The loss function we are considering is the the L2 loss,

L(w) = (y − xTw)2

The empirical risk is

R̂(h(w)) =
1

N
‖y −Xw‖2

The learning is understood as the process of finding the optimal w. In this case, we have
a closed form solution,

∇wR̂(w) = 2XTXw − 2XTy = 0

wopt =
(
XTX

)−1
XTy

(3.6)

After "learning", we can make prediction (inference) ŷnew on new data xnew based on the
learned model h(x;wopt),

ŷnew = xTnewwopt (3.7)

Linear Regression for Classification The classification problem is defined by the label
being binary y ∈ {−1, 1}. We could solve the classification problem with linear regression
by embedding the binary label in continuous space.

We can still consider the L2 loss, and all the formula in linear regression above still
follows. The only thing that is different is in the prediction. We should interpret the con-
tinuous label predicted as a binary label.

ŷnew = xTnewwopt −→ sgn(ŷnew)

This is of course not the best way to solve a classification problem. But we will see
that this simple method gives us some intuition about decision boundary and the effect of
nonlinear transform.

The decision boundary is the hyperplane defined by

xTwopt = 0 (3.8)

By the definition, data is divide into two sets by the hyperplane and data is labeled to
be positive or negative by the side it is in. For a binary classification problem, we said
the input data is linear separable, if there exist at least one hyperplane with all the data
classified correctly.

Non-linear transform Now we consider the case where we have a 2-dimension input
data {1, x1, x2}. We see that the decision boundary is a line in x1 − x2 plane.

x1w1 + x2w2 + w3 = 0

We show an example of data that is not linear separable in figure 3.1

.

. The data is not
linear separable in the basis x1, x2. Since applying linear model is equivalent to draw a

40

3.2. Linear Model

−1 0 1
x1

−1.0

−0.5

0.0

0.5

1.0
x
2

(a) x

0.0 0.5 1.0
x2
1

0.00

0.25

0.50

0.75

1.00

x
2 2

(b) Φ(x)

Figure 3.1.: Same data is plotted in the basis of {x1, x2} in (a) and {x21, x22} in (b). It is easily
to see data is linear separable in (b).

straight line for decision boundary, many data will be classified wrongly and the model is
expected to perform poorly.

By inspection, we know that to have a good result we need to draw a circular deci-
sion boundary. We could effectively do this with linear model with a nonlinear transform
Φ(x) = [x21, x

2
2] on the original data x = [x1, x2]. We can then separate the data with the

boundary,
w1x

2
1 + w2x

2
2 + w3 = 0

which is a line in Φ(x) space and a circle in x space. We can even consider a second order
mapping, Φ(x) = [x1, x2, x

2
1, x1x2, x

2
2]. By this mapping, we can have decision boundary

with conic sections.
In general, we can consider any mapping,

Φ : x ∈ Rd → Φ(x) ∈ RD (3.9)

and define the linear model in the transformed space h(x;w) = wTΦ(x). The model de-
fined in high-dimensional space is usually more powerful comparing to a linear model in
the original input space. However, with a more complicated model, one might need to pay
the the price of over-fitting 2

.

.
Support Vector Machine (SVM) could be considered as linear model in high-dimensional

space (sometimes even infinite dimensional) with clever regularization to prevent over-
fitting. Neural Network consider the nonlinear transformation defined by composite func-
tions, i.e.:

Φ(x) = φn(φ(n−1)(· · · (φ1(x;w1) · · ·);wn−1);wn)

2One well-known example of nonlinear transform and over-fitting is the data fitting with polynomial regres-
sion, where the nonlinear transform is simply x→ {1, x, x2, . . . }.

41

3. Method II: Machine Learning

Moreover, since we parametrize the functions in the composition, we will learn the optimal
non-linear transform within the composite function class.

3.3. Neural Network

In this section, we review the definition of feedforward neural networks and give the def-
inition of the activation functions. We then review the backpropagation method and the
optimization methods. In the end, we talk about how to randomly initialize the weights
of the network. For more detail, see [30

.

].
Same as discussed in 2.3.5

.

and 2.3.6

.

, a general k-layers fully-connected feed-forward
neural network with input vector x is defined as,

fNN (x;W) = g(out)(W (out)h(k) + b(k)) (3.10)

h(k) = g(k)(W (k)h(k−1) + b(k−1)) (3.11)
... (3.12)

h(1) = g(1)(W (1)x + b(1)) (3.13)

where we expand the equation (2.113

.

).
In convolution neural network, we replace the matrix products by convolution opera-

tions and we have

fCNN (x;W) = g(out)(W (out) ∗ h(k) + b(k)) (3.14)

h(k) = g(k)(W (k) ∗ h(k−1) + b(k−1)) (3.15)
... (3.16)

h(1) = g(1)(W (1) ∗ x + b(1)) (3.17)

which is the expansion from (2.114

.

).

Activation function Training deep neural networks is made possible partially because
of the development of new activation functions. Now people move away from using the
hyperbolic-tangent or the sigmoid function f(x) = 1

1+e−x to using rectified linear unit
(ReLU) [60

.

]. Alternative activation functions are still research topic. We show the defini-
tion of some promising but not well-accepted activation functions including exponential
linear units (ELU) [14

.

], scaled exponential linear units (SELU) [49

.

], Swish [68

.

].
Definitions of some activation functions are given below and shown in figure 3.2

.

.

• ReLU(x) = max(0, x)

42

3.3. Neural Network

−4 −2 0 2 4
x

−2

0

2

4

f(
x
)

ReLU
Softplus
Softplus2
ELU
SELU
log_cosh

Figure 3.2.: ReLU, Softplus, ELU converge for large x (the red line). For ELU, we have
α = 1. Parameters in SELU α ≈ 1.673, λ ≈ 1.0507 are chosen such that we have
a fix point at mean zero and unit variance for the signals [49

.

].

• ELU(x) =

{
x if x ≥ 0

α(ex − 1), otherwise
.

• SELU(x) = λ

{
x if x ≥ 0

α(ex − 1), otherwise

• Softplus(x) = ln(1 + ex)

• Softplus2(x) = ln(1+e
x

2)

Complex-valued Neural Network By complex-valued neural networks or complex neu-
ral networks, we mean neural networks with complex-valued parameters. The output,
however, could be real or complex. Some recent works on complex-valued neural net-
works could be found in [90

.

, 32

.

]. The idea is simple. One could replace all the real-valued
weights in the network with complex-valued weights. We will give the formulation and
the advantages below. The nontrivial part is the design of activation function. For that, we
will review different generalization of the ReLU activation function to complex domain.

We can think of the complex vector x = xR + ixI as two real vectors, and the complex
weight matrix W = WR + WI . The multiplication or convolution operation is given by,

W ∗ x = (WR ∗ xR −WI ∗ xI) + i(WR ∗ xI + WI ∗ xR). (3.18)

43

3. Method II: Machine Learning

We see that if we represent x by concatenating the real and imaginary part of the vector
into a larger vector. We have,[

R(W ∗ x)
I(W ∗ x)

]
=

[
WR −WI

WI WR

] [
xR
xI

]
(3.19)

The complexity of the weights could be seen as a structured the real-valued weight as
above, which reduce the number of parameters by a factor 2. In practice, we consider the
formulation above of two real-valued weights, since modern deep learning libraries do
not support convolution operation with complex type.

Complex activation function To generalize ReLU to complex domain, it is natural to
require the generalization satisfy the condition that,

∀x ∈ R Complex ReLU(x) = ReLU(x)

Guberman [32

.

] proposed to use,

zReLU(z) =

{
z, if θz ∈ [0, π/2]

0, otherwise
(3.20)

Chiheb et al. [90

.

] proposed to apply the activation separately on both the real and the
imaginary part, i.e.

CReLU(z) = ReLU(R(z)) + iReLU(I(z)) (3.21)

Here we also give another different generalization sReLU motivated from the softplus
activation. Since softplus activation is considered as the smooth approximation of ReLU,
we first consider the softplus activation in complex domain. We show the visualization
of softplus activation in complex domain softplus(z) = log(1 + ez) in figure 3.3

.

, which
suggest the following definition.

sReLU(z) =

{
z, if θz ∈ [−π/2, π/2]

0, otherwise
(3.22)

3.3.1. Optimization of Neural Network

Back-propagation of Fully-Connected Neural Network In the neural network, the back-
propagation is the technique of carrying out the chain rule throughout the layers of the
neural network to obtain the gradient of each weight matrix. In modern deep learning
library, such process can be generated through an computation graph, and techniques in
dynamic programming are involved so computation can be replaced by storing the inter-
mediate result through out the step.

44

3.3. Neural Network

First we need to make the convention clear. Consider a L layer neural network. The
0’th layer is the input layer and the L’th layer the output layer. The index of the layer is
denoted by l ∈ {0, 1, . . . , L}. Nl is the number of neurons in l’th layer. By wljk and blj , we
denote the component in the weight matrixW l and the bias vector bl connecting layer l−1
to layer l.

The output of the hidden layer is, xl = g(W lxl−1 + bl). We define the intermediate unit
before the activation function is applied as, zl = W lxl−1 + bl. The partial derivative is
calculated with respect to some objective function f over the output, δlj = ∂f

∂zlj
. In the case

of VMC, f is an logarithm function f(x) = log x.

The intermediate derivative in the output layer and the subsequent layer is given by,

δmj =
∑
k

∂f

∂xmk

∂xmk
∂zmj

= g′(zmj)
∂f

∂xmj
= g′(zmj) (3.23)

δlj =
∑
k

δl+1
k

∂zl+1
k

∂zlj
=
∑
k

δl+1
k wl+1

kj g
′(zlj) (3.24)

where the summation runs over all the neurons in the layer considered. The derivative
with respect to the weight matrix and the bias:

∂f

∂blj
=
∑
k

∂f

∂zlk

∂zlk
∂blj

= δlj (3.25)

∂f

∂wljk
=
∑
i

∂f

∂zli

∂zli
∂wljk

= δljx
l−1
k (3.26)

Back-propagation of Convolutional Neural Network Here we consider the case in one
dimension 3

.

,

zli = W l ∗ xl−1i + bli =

|w|−1∑
a=0

wlax
l−1
i+a + bki (3.27)

3Machine Learning community tend to use the word convolution while they actually mean cross-correlation.
There might be a sign difference in the definition comparing to other material.

45

3. Method II: Machine Learning

Then again we introduce the δ derivative with respect to intermediate element.

δli =
∂f

∂zli
=
∑
i′

∑
a

∂f

∂zl+1
i′

∂wl+1
a σ(zli′+a)

∂zli
(3.28)

=
∑
i′

δl+1
i′ wl+1

i−i′σ
′(zli) (3.29)

=

|w|−1∑
j=0

δl+1
i−jw

l+1
j σ′(zli) (3.30)

δli = δl+1 ∗ flip(W l+1
i)σ′(zli) (3.31)

The derivative with respect to the convolution kernel,

∂f

∂wla
=
∑
k

∂f

∂zlk

∂zlk
∂wla

=

|δl|−1∑
i=0

δlix
l−1
i+a = δl ∗ xl−1a (3.32)

∂f

∂blj
=
∑
k

∂f

∂zlk

∂zlk
∂blj

= δlj (3.33)

Stochastic gradient descent algorithm A good review on first-order stochastic gradient
descent algorithms is given in [70

.

]. We have already given an overview of the second-order
methods in VMC section, for more detail see [53

.

].

3.3.2. Initialization of Neural Network

Training neural network is like cooking. Everything seems easy when one follows the steps
in the cookbook. However, things could easily go wrong for non-expert if instructions
are not followed. It is the case, even till 2010, that people struggle with training deep
neural network. There are several reasons for this: (1) the initialization, (2) the activation
function, (3) the architecture. Deep learning is only possible with the development of
Glorot initialization, He initialization, ReLU, batch normalization, residual network etc.
We address the issue of initialization here.

Bad initialization could easily push the activation function toward the saturated region,
where the gradient vanishes. As a result, people used to initialize the parameters by un-
supervised pretraining[19

.

] or greedy layer-wise training procedure [4

.

]. Even if the activa-
tion function is chosen such that there should be no saturation, e,g, ReLU, the networks
still have difficulties to converge [83

.

]. Globat and Bengio [27

.

] study the propagation of
gradients in deep neural network and proposed a proper initialization scheme. He et al.
[40

.

] follow the same idea and study the initialization for ReLU activations. The idea of
He initilization is reviewed and the discussion for initialization in complex-valued neural
network is followed.

46

3.3. Neural Network

MSRA Initialization, a.k.a. He Initialization Here, we follow the derivation in [40

.

] for
2-dim convolutional neural networks. It is straight forward to generalize the derivation to
other dimensions. The basic idea is to keep the variance of the output invariant in every
layer. For each layer, we have,

yl = Wlxl + bl

xl = f(yl−1)

In each layer, x is a vector of size n = k2c, which comes from the reshaping a k×k block of
c input channels. k is the filter size. W is of size d× n. d is the number of output channels.
The relationship should holds dl−1 = cl. The f is the activation function chosen.

Several assumptions are made here. We assume the elements [Wl]ij are independent
and identically distributed (i.i.d.) random variables denoted by wl. In addition, wl are
symmetric distributed around zero and have zero mean. We assume the elements [xl]i are
also i.i.d. random variables denoted by xl, and are independent with [Wl]ij . Then, we
have,

Var[yl] = nlVar[wlxl] (3.34)

Var[wlxl] = Var[wl]Var[xl] + E[wl]
2Var[xl] + Var[wl]E[xl]

2 (3.35)

From the assumption, we have E[wl] = 0. yl is symmetric and has zero mean if bl = 0.
Therefore, Var[yl] = E[y2l]. However, E[xl] 6= 0 if f is not symmetric around zero.

Var[yl] = nlVar[wl]E[x2l] (3.36)
= nlVar[wl](αVar[yl−1]) (3.37)

where α is a number depends on the activation function and should be determined from
E[x2l] = αE[y2l−1]. For, ReLU, xl = max(0, yl−1), we have E[x2l] = 1

2E[y2l−1]. Now, we obtain
the iterative relation for forward propagation of a general activation,

Var[yl] = αnlVar[wl]Var[yl−1] (3.38)

For a L layers neural network, we have,

Var[yL] = Var[y1]
(L∏
l=2

αnlVar[wl]
)

(3.39)

From the equation above, we see that a bad weight initialization would lead to exponential
growing or decay of the magnitude of the output. As a result, it is suggested to initializewl
by a zero-mean symmetric distribution, e.g. Gaussian, with standard deviation of

√
1
αnl

.
In general, the value α depends on both the activation function and the distribution

of wl. While in the case of ReLU and PReLU, the assumptions above already determine

47

3. Method II: Machine Learning

α values
Activation function α Distribution
ReLU 1

2 All symmetric zero mean
PReLU 1

2(1 + a2) All symmetric zero mean
Softplus ≈ 0.921 Gaussian unit std
Softplus2 ≈ 0.284 Gaussian unit std
elu ≈ 0.645 Gaussian unit std

Table 3.1.: The comparison between different alpha values in network initialization.

the value of α, it is not the case for other activation functions. In the case of ReLU, He
et al. suggested to use Gaussian distribution. In the following, we gives the values of α
assuming wl is from Gaussian distribution.

So far, we only give the iterative relation for forward propagation. In [40

.

], the iterative
relation in backward propagation is also studied with a similar relation

α̂n̂lVar[wl] = 1 (3.40)

where α̂ = 1/2 for ReLU, and n̂ = k2d. Setting up the weight with this equation would
lead to a factor of c2/dL in forward propagation, which is acceptable number for typical
neural networks. We will simply follow the criterion derived from forward propagation.

One remark is given here. Even with proper initialization, it is not guarantee the gra-
dient can propagate nicely. A more radical approach is introduced recently, named self-
normalizing neural network [49

.

].

3.4. Policy Based Reinforcement Learning

The approach in Reinforcement Learning (RL) could be roughly divided into three cate-
gories: policy-based, value-based, model-based. They are not mutually exclusive. Here,
we review some result of policy-based RL that is related to VMC.

Setting: In policy-based RL, one parametrizes the policy distribution as πθ = π(a|s, θ),
where s is the state and a the action, which would lead to different states. A reward is
assigned for each state action pair rt(st,at). There are different policy objective functions,
here we consider the average reward per time-step as objective function,

J(θ) =
∑
s

dπθ(s)
∑
a

π(a|s; θ)r(s,a) = Eπθ [r] (3.41)

where dπθ(s)(s) is the stationary distribution of the Markov chain generated by πθ.
Policy-based RL is an optimization problem. Finding the maximum of the policy objective

function gives us the policy that would generate the best overall rewards. The essence of

48

3.4. Policy Based Reinforcement Learning

the problem is to find the parameters of a distribution to maximize/minimize an expec-
tation. Similar problems show up in variational inference, fitting latent-variable models,
where the problem is to optimize

L(θ) = Ep(z|θ)[f(z)]. (3.42)

The optimization problem could be solved by stochastic gradient descent/ascent. One
inserts the log derivative to recover the form of expectation value.

∇θL(θ) = Ep(z|θ)[f(z)∇θ log p(z|θ)] (3.43)

ĝ[f] = f(z)∇θ log p(z|θ), z ∼ p(z|θ) (3.44)

The stochastic gradients ĝ is obtain from sampling and is unbiased, i.e. E[ĝ] = ∇θL(θ).
The method is known under different names, including score-function estimator [50

.

], like-
lihood ratio methods, and REINFORCE [99

.

] or policy gradient when applied to optimize
the policy objective function,

∇θJ(θ) = Eπθ [r log π(a|s; θ)] (3.45)

=
∑
s

dπθ(s)
∑
a

π(a|s; θ)∇θ log π(a|s; θ)r(s,a). (3.46)

With different policy objective functions, the policy gradient still has the same form,
with r replaced by long-term reward. One disadvantage of using policy gradient is that
the gradient estimator usually has high variance.

Control variates In RL, one usually choose the state-value function V π(s) = Eπ[r|s1 = s]
as a baseline. Observe that

Ep(z|θ)[V π(s)∇θ log p(s|a)] =
∑
s

dπθ(s)V π(s)∇θ
∑
a

π(a|s; θ) = 0

suggest that we can improve the variance of the policy gradient by considering,

∇θJ(θ) = Eπθ [(r − V
πθ) log π(a|s; θ)]. (3.47)

The (r − V πθ) is the advantage function which suggest update direction toward policy
better than average 4

.

.
Other methods were developed to create low-variance, unbiased gradient estimator

such as the reparameterization trick [99

.

, 48

.

], combining the value function by actor-critic
algorithm, or even advantage actor-critic estimator (A2C) [87

.

].

4In general, the method consider to reduce the variance of the stochastic estimator by subtracting a control
variate c(z) and adding back the known mean Ep(z)[c(z)].

ĝnew(z) = ĝ(z)− c(z) + Ep(z)[c(z)]. (3.48)

The variance would be reduced if c(z) is positively correlated with ĝ(z).

49

3. Method II: Machine Learning

Another direction is to consider second-order methods discussed before with policy gra-
dient, including natural policy gradient [47

.

], trust region policy optimization (TRPO) [77

.

],
actor critic using Kronecker-factored trust region (ACKTR) [101

.

].
Deep reinforcement learning is simply the same as the discussion above, but with policy

function represented by neural networks. While with the well-known success in master-
ing the game of go by self-play [81

.

, 82

.

], deep reinforcement learning is also known for
problems like sample-inefficient, not easily generalizing to different task, local minima,
numerical instability.

Comparison with VMC and supervised learning Recall in VMC, we also have (2.8

.

) of
the same form. The gradient estimate in VMC (2.20

.

) or (2.22

.

) is similar to the REINFORCE
method with baseline in policy-based RL.

In fact, VMC is very similar to reinforcement learning. However, there is some small
differences. In VMC, we work with quantum amplitude instead of probability. We do not
parametrize the policy function, but the full quantum amplitude. The transition between
state occur as a result of MCMC sampling. Also the wavefunction is often not normalized.
The baseline term appears from the derivative of the normalization constant. This simi-
larity suggests that it is possible that one could adapt methods in RL to VMC to improve
VMC method.

On the other hand, VMC/RL is quite different from supervised learning. In supervised
learning, we usually assume that we have "fixed" data coming from i.i.d. sampling of an
unknown distribution. In VMC/RL, however, we do not have a "fixed" data set. The data
is generated by MCMC sampling of the current solution. After updating the parameters
of the function, we always need to sample again.

The scenario for tasks in deep learning and VMC are quite different. In deep learning,
one often work with models up to millions parameters. The data is given and stored in
the computer. Because of the memory constraint, one works with the data in mini batch,
which usually with the size of ten to one hundred.

In VMC, the number of parameters strongly depends on the wavefunction chosen. How-
ever, this usually only range from tens to thousands. One major difference is new data
must be "generated" in each step by MCMC. Though the model is small, one need to
estimate the energy correctly in order to have the gradient correct. For stability of the
optimization, there is no "mini-batch" gradient descent. In each iteration the size of data
sampled could be tens of thousands, depending on the size of system studied. See table
3.2

.

5

.

.
Because of these difference up to several order of magnitudes, the training strategy

should be different. For typical deep learning task, even though second-order methods
and natural gradient method converge faster than gradient descent methods in terms of
number of iterations, it is slower in terms of wall clock time. The main reason is that the
calculation of second-order matrix is expensive. As a result, the dominant methods in

5dataset like ImageNet competition[71

.

]

50

3.5. Kronecker-Factored Approximate Curvature

deep learning community are still gradient descent based methods. The situation is differ-
ent for VMC calculation, where the bottleneck of computation lies in the generation of data
through MCMC process or the calculation of local energy. The cost of second-order meth-
ods are at most of the same. Therefore, using second-order method or natural gradient
method is more efficient even in terms of wall clock time.

Comparison of Computation Complexity
Number/Size of VMC (Supervised)

Deep Learning
Reinforcement
Learning

Mini-batch Data : Nd O(1000) O(10) to O(100) O(10) to O(1000)
of parameters Nw ≤ O(106) ≥ O(106) ≤ O(106)
of iteration Nc O(10000) n/a n/a
Preferred Methods : Second-order

methods
First-order meth-
ods

Second-order
methods

Table 3.2.: The brief comparison between VMC, deep supervised learning and deep rein-
forcement learning.

3.5. Kronecker-Factored Approximate Curvature

James Martens developed the Kronecker-Factored Approximation for the Fisher informa-
tion matrix in his PhD study [53

.

]. This is applied to simple fully-conneted network [54

.

],
convolutional network [31

.

], and is scalable for distributed computing [3

.

]. In supervised
learning, it is shown by Matt Johnson and Daniel Duckworth from Google Brain that such
method can be applied to ResNet-50 on SVHN dataset. K-FAC has strong scaling behavior
in terms of data presented and requires 2.3x to 7.8x fewer steps comparing to SGD algo-
rithm. It has successfully been applied to Reinforcement Learning combining with the
Advantage-Actor-Critic (A2C) method known as ACKTR is currently one of the state of
the art methods.

Kronecker-Factored Approximate Curvature (K-FAC) methods are based on two ap-
proximations. (1.) Approximating Fisher information matrix by a blocked matrix. Each
block corresponds to different layers. (2.) Assuming the statistic independence between
the activations and the backpropagated derivatives. With these two assumption, we could
derive the simplest version of K-FAC on fully-connectected neural networks.

Consider the weight matrix W ∈ RCout×Cin in the lth layer, where Cout and Cin are the
number of output/input neurons of the layer. The output distribution of the network is
p(y|x) and the log-likelihood L = log p(y|x). The log derivative of the weight matrix is
given by ∇WL = (∇sL)aT , where a ∈ RCin is the input activation vector, s is the pre-
activation vector for the next layer, and s = Wa. With the first assumption, we consider
the block of Fisher information matrix corresponding to layer l in the neural network as

51

3. Method II: Machine Learning

Fl.

Fl = E[vec{∇WL}vec{∇WL}T] = E[aaT ⊗∇sL(∇sL)T] (3.49)

≈ E[aaT]⊗ E[∇sL(∇sL)T]
.
= A⊗ S .

= F̂l (3.50)

With the second assumption, we obtain the Kronecker-factored approximated fisher block
F̂l. Immediately, we see with this approximation, one can compute the natural gradient
for weight matrix W efficiently

F̂−1l vec{∇WJ} = vec{A−1∇WJS−1} (3.51)

where J is the objective function, and the identity

(A⊗ S)−1vec{x} = A−1 ⊗ S−1vec{x} = A−1xS−1

is used.
There are several advantages for computing approximated natural gradient with K-FAC.

The first advantage is that the cost, as shown in the equation above, is about the computa-
tion on matrices with the same size asW . This makes natural gradient as cheap as gradient
descent methods even in deep networks. Secondly, Hessian-Free algorithm or natural gra-
dient with iterative solver could not accumulate data from previous updates. As a result,
small batch size would lead to poor update. With K-FAC, one could work with small batch
size and with stable update by keeping moving average of the approximation to the Fisher
matrix block.

Application to Reinforcement Learning In RL, sampling could be expensive. As a re-
sult, advanced optimization methods which try to extract more information from the a
single batch usually outperform simple gradient descent algorithm, e.g. TRPO. Combin-
ing with actor-critic method and with an update control preventing large updates to policy,
K-FAC is applied to RL successfully [101

.

].
In RL, the underlying distribution is defined by the policy or the value function, which

changes with the update of parameters. Nevertheless, it is observed in practice that keep-
ing moving average of the metric still works well for RL problems.

3.6. Connection to Methods in Condensed Matter Physics

EPS/CPS as Graphical Model
EPS/CPS have the same form of factor graph in Graphical Model. Both factor the high

dimension tensor as products of smaller tensors. While for quantum states the value of
the tensor is in general complex, the value for graphical model could only be positive
number. Earlier work have tried to generalize the graphical model for wavefunction and
translate the algorithm for graphical model to calculating physical quantities. There are

52

3.6. Connection to Methods in Condensed Matter Physics

two different generalization done with this analogy of quantum amplitude from classi-
cal probability. Matthew and David develop quantum Graphical Models and quantum
(loopy) belief propagation by working at the level of density matrix and introducing non-
commutable algebra structure. Hasting also came up with the same idea. [51

.

, 36

.

] Tucci et
al. has developed another approach to quantum Graphical Model and related algorithm
based on simply replacing the probabilities with complex valued amplitudes [91

.

, 92

.

, 93

.

].
Even though it may be obvious that one could always write the EPS/CPS in tensor net-

work language and vice versa, ignoring the resulting complicated structure. In [69

.

], a nice
correspondence between graphical model, i.e. EPS/CPS and tensor network states is for-
mulated using hypergraph. With this formulation, it is clear that tensor network states are
EPS/CPS with auxiliary sites. The formulation of EPS/CPS as correlator operator on some
references states has also interesting correspondence in graphic models. It is equivalent to
saying the graph (EPS/CPS) describe the likelihood function and the references states is
the prior. An uniform prior is the equal weighted superposition of product states.

Application of Tensor Network in Machine Learning
Recently, it is shown that Tensor Network could be applied to Machine Learning. For

example, MPS [86

.

], MERA for supervised learning [52

.

], MPS for word embedding [66

.

] and
language model [67

.

], and MPS/MPO for Neural Network compression [64

.

, 24

.

].

53

3. Method II: Machine Learning

x−3 −2 −1 0 1 2 3

y
−3

−2−10123
-2.78
-2.13
-1.47
-0.82
-0.17
0.49
1.14
1.80
2.45
3.11

(a) Real part of softplus

−1

0

1

2

x

−3 −2 −1 0 1 2 3

y

−3
−2
−1

0
1
2
3

-3.14
-2.45
-1.76
-1.07
-0.39
0.30
0.99
1.68
2.37
3.06

(b) Imaginary part of softplus

−3

−2

−1

0

1

2

Figure 3.3.: We show the surface plot of softplus activation in complex domain by separat-
ing the real (a) and imaginary part (b) of the activation.

54

4. Literature Review

As a new emerging method to solve quantum many-body problem, there is only a few re-
lated work. While most of the work done so far is with RBMQS, NNQS is only considered
by Zi Cai and Jinguo Liu [5

.

] and Hiroki Saito [72

.

]. A short remark on their work is given.
We start with an overview of some other NNQS-related numerical methods and the J1-J2
model we tested on.
J1-J2 model
We consider previous results for J1-J2 model as baseline for comparison. For the con-

venience of comparison, we consider 8 × 8 lattice with J2/J1 = 0.5, where numbers for
DMRG [28

.

], finite PEPS [96

.

], VMC with Lanczos [44

.

] are available. These finite size results
are consistent and difference in variational energy per site is smaller than 10−3. However,
they suggest different nature of the ground state for J2/J1 ≈ 0.5. VMC result [44

.

] suggests
a gapless Z2 spin liquid between 0.45 ≤ J2/J1 ≤ 0.6. DMRG [28

.

] predicts a plaquette VBS
phase between 0.5 < J2/J1 < 0.61. In [96

.

], they found a paramagnetic ground state with
exponentially decaying spin-spin correlation in between 0.572 < J2/J1 ≤ 0.6.

Depends on the numerical methods, different scenarios are reported for J1-J2 model.
The nature of the underlying state seems to be more difficult to understand with the ad-
vance of competitive method with almost the same variational energy. For recent work in
DMRG and iPEPS, see [97

.

] and [35

.

]. Though the predictions of the nature for underlying
state are different, the consistent variational energies are still a valid baseline for testing
new numerical method for frustrated quantum spin systems.

SBS
Since RBMQS is a subset of SBS, it is reasonable to compare the previous result with SBS.

In [76

.

, 78

.

], SBS is applied to two dimension and three dimension frustrated systems. In
[76

.

], frustrated XX model on 2D lattice with open boundary conditions (OBC) and periodic
boundary conditions (PBC) are tested, where for the OBC cases the result is better than
PEPS and for the PBC cases there is no other comparable methods. The result for 2D Ising
model with transverse field with PBC is shown with a relative error of the order 10−3

using bond dimension D = 2. In [78

.

], 2D J1-J2 model with lattice size up to 10 × 10, 3D
Ising model with transverse field on 8 × 8 × 8 PBC lattice, and 3D frustrated XX model
in a transverse field are considered. For both OBC and PBC, the 2D J1-J2 model results
comparing to PEPS data give relative error range around 2×10−2 to 8×10−2. This implies
these states are still away from ground state. In our result, we see that RBMQS and NNQS
could reach a better results for PBC comparing with SBS.

RBMQS
Since the original work for RBMQS on Heisenberg model [9

.

], theoretical works [12

.

, 23

.

,

55

4. Literature Review

16

.

, 45

.

] are done to show the connection of RBM and Tensor Network and suggest the
powerful representation of deep Boltzmann Machine (DBM). However, there is no efficient
training method for DBM. On the other hand, RBMQS has been generalized for fermionic
systems with the name F-RBM and applied to Hubbard model [63

.

]. The F-RBM is a pro-
jector formed with two RBM over some reference state. The F-RBM with pair-product
wavefuncion is shown to be competitive wavefunction for studying strongly correlated
fermionic system.

Because of the non-local geometry of the RBMQS, it is shown that RBMQS could ap-
proximate a chiral spin liquid with better accuracy comparing to EPS and SBS [26

.

].
NNQS
The main goal of this thesis is to apply NNQS to high dimensional d ≥ 2 frustrated

problem. NNQS could also be applied to problem without sign-problem. Hiroki Saito per-
formed VMC with fully-connected neural network for Bose-Hubbard model [72

.

]. Their
results are in good agreement with exact diagonalization and the Gutzwiller approxima-
tion.

For problem with sign problem, Zi Cai and Jinguo Liu [5

.

] consider supervised learn-
ing with fully-connected neural network for J1-J2 in one dimension for up to three layers.
They also performed VMC optimization with 1-hidden layer fully-connected neural net-
work. There are several drawbacks in their approach.

In supervised learning task, they separate quantum amplitude into sign and magnitude.
Two independent networks are trained separately. While the prediction of quantum ampli-
tude is essentially a regression problem, the separation of one regression problem into a
regression problem for magnitude and a classification problem for sign has several prob-
lems.

Firstly, we can not put back two problems to one single regression problem. That is
after training separately and has a good enough result, one can not continue the training
with two networks jointly by supervised learning or VMC optimization. This is because
for the classification network (sign-ANN) to work, a step-function is applied. Gradient
descent could not be applied. If one considers to apply sigmoid/cosine function instead,
the output of the regression network for magnitude is then affected by the multiplication
of sigmoid/cosine function. Weights in the regression network for magnitude would need
to learn again and will end up in a different network. This means we can not start with
some known physical state from other methods, perform supervised learning to have a
good starting point, and then do VMC optimization in the final stage. In the our setup,
supervised learning over the network could be perform directly.

Secondly, it is observed in practice that having one neural network to learn multiple
tasks could usually have better performance. By one neural network, we mean a neural
network consisted of base network and multiple heads [82

.

, 39

.

].
In addition, forcing the network to only learn the "sign" limits the generalization to

model with complex Hamiltonian. By modifying the classification network to learn the
phase, the problem becomes a regression problem. In the end, we see we better try to learn
the phase and magnitude as regression problems together.

56

Part III.

Results and Discussion

57

5. Results and Discussion

In this thesis, we focus on spin model on 1-dimension ring and a 2-dimension torus. The
Hamiltonian for anti-ferromagnetic Heisenberg and J1-J2 model are defined as,

HAFH = J
∑
〈ij〉

[σxi σ
x
j + σyi σ

y
j + σzi σ

z
j] (5.1)

HJ1-J2 = J1
∑
〈ij〉

[σxi σ
x
j + σyi σ

y
j + σzi σ

z
j] (5.2)

+ J2
∑
〈〈ij〉〉

[σxi σ
x
j + σyi σ

y
j + σzi σ

z
j] (5.3)

where 〈·〉, 〈〈·〉〉 denote the nearest neighbor and next nearest neighbor on the lattice with
periodic boundary condition.

5.1. Implementation

For the study in this thesis, VMC and supervised learning code for general NNQS was de-
veloped. The guide to the code is given in the Appendix A.1

.

. The implementation is based
on Python with libraries including NumPy, SciPy, and TensorFlow [1

.

]. While NumPy and
SciPy are standard numerical libraries in python, TensorFlow is an open source numer-
ical library with reverse-mode automatic differentiation. It was originally developed by
researchers and engineers working on the Google Brain Team for neural networks. The
analytic formula or symbolic differentiation for derivative quickly become intractable for
neural networks and numerical differentiation is not accurate and not efficient. Modern
deep learning libraries, e.g. TensorFlow, PyTorch, CNTK, Theano, are all designed with
automatic differentiation. These libraries usually have highly optimized tensor computa-
tion implementation on CPU and GPU. For using TensorFlow, one must first define the
complete computation graph 1

.

and during run-time the data would "flow" forward and
backward in the graph. The overhead with python is usually negligible since we keep
almost all the operations in TensorFlow.

Given the enormous amount of effort deep learning community devoted in developing
TensorFlow, there are still some cases where the functionality needed for physics is not
built in. Here we briefly state the difficulties.

1We define the network in Class tf_network.

59

5. Results and Discussion

• To construct the S matrix in SR method, we have to approximate the expectation
value of the outer product of the gradient. That means we must have unaggregated
gradient (batch gradient), which is an ill-defined concept in terms of automatic dif-
ferentiation. One could only compute the derivative per configuration at a time,
which is slow. There are different ways to speed this up [29

.

]. In the implementation,
we exploit the parallelization in "while_loop" function 2

.

.

• Many function does not support complex type. One has to manually split and oper-
ate on the real and the imaginary part. The derivative of a complex-valued function
parametrized by real variables in TensorFlow, would be automatically casted back
to real. This is done because it is expected that gradient is taken from a real-valued
function. However, for the calculation of 〈∆∗〉 of a complex-valued wavefunction,
one then need to split the real and the imaginary part. Basically, special care need to
be taken with the complex derivative used.

• To implement translational invariant wavefunction, it involves the circular convolu-
tion. Such operation is not supported since images are not considered to be periodic,
and convolution is used with valid padding or zero padding. One could implement
periodic padding with convolution which gives the result of circular convolution
3

.

. Another alternative way of doing this is to use fast Fourier transform (FFT) [55

.

],
since the circular convolution is the matrix multiplication in Fourier space. However,
it is observed that for the usually small filter size we considered the performance is
worse than periodic padding.

5.1.1. Wavefunction evaluation with level 3 parallelization

In NNQS, the evaluation of wavefunction is based on forward pass of the neural network.
Depending on the size of network, the input could take batch size up to hundreds or
thousands. This suggest a parallelization in amplitude evaluation, which is different from
the usual parallelization scheme for VMC calculation.

For most of the VMC wavefunction, usually only one configuration could be evalu-
ated at a time. Parallelization is made by having multiple walkers on different processors.
Communication is needed to (1.) collect the local energy and log derivative (2.) compute
the final gradient and update parameters for all walkers. If the number of parameters is
not large, the bottleneck would be in the calculation from the walkers. Weak scaling is
expected, while strong scaling should hold till the computation bottleneck is not in the
walkers.

Now, we can keep the parallelization between different processors, but exploit the par-
allelization in a lower level, e.g. level-3 BLAS operation, by evaluating the amplitudes
in batch. We exploit the speed up with coarse-grain parallelism. While the evaluation of

2See build_unaggregated_gradient method in class tf_network.
3This is done in "network\tf_wrapper".

60

5.2. VMC Result

single configuration involves matrix-vector multiplication, of which the computation to
memory access ratio is about O(1), the evaluation over batch of configurations involves
matrix-matrix multiplication, of which the computation to memory access ratio is about
O(N) [18

.

]. This can easily speed up memory bound computation. Other advantages in-
clude parallelization with blocks operation and avoiding function call overhead in python.

5.1.2. GPU Speed up

With the implementation based on TensorFlow, one can easily switch using GPU for com-
putation simply by running the code on machine with GPU without changing the code. A
significant speed up is observed for deep NNQS. For MCMC sampling and VMC without
SR method, a factor of 10 speedup is observed for standard deep neural network architec-
ture like ResNet10 [41

.

], which is a neural network with 20 layers, and 746434 number of
parameters in total. However, we could not obtain meaningful VMC result simply without
SR method.

5.2. VMC Result

The optimization in VMC is quite tricky. We first describe the network architecture design
and the argument behind using exponential in the output unit in 5.2.1

.

and we discuss
some detail for obtaining stable VMC result in 5.2.2

.

. The final result of VMC with NNQS
is given in 5.2.3

.

.

5.2.1. Distribution of the coefficients of eigenvectors

There are several important questions one should ask before performing any machine
learning techniques. What are (the distribution of) input data and output data? Is my
method the correct way to describe it? We always need to change our models according to
the data given. We might even need to change the loss function in the case when the data
is imbalanced.

What is the typical distribution of the coefficients of the eigenstate, especially the lowest
eigenstate, look like? To answer this question, we diagonalize the Hamiltonian exactly on
a 4×4 lattice with periodic boundary condition and plot the distribution of the coefficients
for Heisenberg model and J1-J2 model with J2/J1 = 0.5.

Without considering the symmetries, the distributions of all the coefficients are of size
dim(H) = 65536 and are shown in figure 5.1

.

and 5.2

.

. Both distributions have peaks center
around zero, where most of the coefficients lies in. After zooming in, we could see there are
a few coefficients of orderO(10−1). For example, there are actually two largest coefficients
corresponding to the Neel state. It is difficult to learn this given that it appears only 2 times
out of 65536. However, these "outlier" in the distributions accounts for the actual physics.

61

5. Results and Discussion

0.0 0.1 0.2 0.3
Ci

0

100

200

300

400
P
(C

i)

(a) Distribution of Ci

40 20 0
log|Ci|

0.00

0.05

0.10

0.15

0.20

P
(l
og
|C

i|)

(b) Distribution of log|Ci|

0.0 0.20.00

0.01

0.02

Figure 5.1.: The distribution of (a) the coefficients and (b) the logarithm of the absolute
value of the coefficients. Here, we consider the ground state of Heisenberg
model.

0.0 0.1
Ci

0

200

400

600

P
(C

i)

(a) Distribution of Ci

40 20 0
log|Ci|

0.00

0.05

0.10

0.15

0.20

P
(l
og
|C

i|)
(b) Distribution of log|Ci|

0.0 0.10.00

0.02

Figure 5.2.: The distribution of (a) the coefficients and (b) the logarithm of the absolute
value of the coefficients. Here, we consider the ground state of J1-J2 model
with J2/J1 = 0.5.

One solution to this problem is to take the logarithm. If we do not consider the sign of
the coefficients, we see that the logarithm of the coefficients are distributed around two po-
sitions. The peak around−40 are the numerical zeros, which are about a factor of machine
precision in double precision smaller than the larger coefficients. The peak closer to zero
gives the physical amplitudes. This seems to be a possible distribution that neural network
could predict. As we will see in the experiments, it is better to predict the magnitude of
the amplitude in log basis.

For the J1-J2 model, the Hamiltonian is a block matrix, where the ground state is at
total spin

∑
i σ

z
i = 0 sector. The total spin zero sector is of dimension 12870. We plot the

distribution of the coefficients in this subspace in figure 5.3

.

and 5.4

.

.
We see that the numerical zeros disappear after restricting to the subspace. That is to

say, the coefficients are all of finite magnitude, hence not sparse, in the restricted subspace.

62

5.2. VMC Result

The distribution without logarithm transform is almost the same as before. The histogram
suggest that it should be easier to work in the log space since the distribution is closer to
normal distribution.

0.0 0.1 0.2 0.3
Ci

0

20

40

60

P
(C

i)
(a) Distribution of Ci

8 6 4 2
log|Ci|

0.00

0.25

0.50

0.75

1.00

P
(l
og
|C

i|)

(b) Distribution of log|Ci|

0.0 0.20.00

0.05

Figure 5.3.: The distribution of (a) the coefficients and (b) the logarithm of the absolute
value of the coefficients. Here, we consider the ground state of Heisenberg
model.

0.0 0.1
Ci

0

50

100

P
(C

i)

(a) Distribution of Ci

10 5
log|Ci|

0.0

0.1

0.2

0.3

0.4

P
(l
og
|C

i|)

(b) Distribution of log|Ci|

0.0 0.10.00

0.05

Figure 5.4.: The distribution of (a) the coefficients and (b) the logarithm of the absolute
value of the coefficients. Here, we consider the ground state of J1-J2 model
with J2/J1 = 0.5.

Numerical experiment We test the effect of log transform on the amplitude by compar-
ing two 1-hidden layer neural networks. The architecture of the network is shown in fig-
ure 5.5

.

The ground state for testing is the Heisenberg model on 4× 4 lattice with periodic
boundary condition.

The network has 16 input units and 64 hidden units with tanh as activation. For a linear
network, we have one output unit for real number. To work in the logarithm space, we
have two output units, one predicting the magnitude, r, and the other predicting the phase,

63

5. Results and Discussion

Output

Hidden

Input

Hidden

Input
Output:
Ci or log(Ci)

r

θ

(a) (b)

Figure 5.5.: (a) The architecture of real-valued 1-hidden layer neural networks with linear
output. The output is taken as Ci, the coefficient, which is real in this setup. (b)
The architecture of real-valued 1-hidden layer neural networks with outputs
as magnitude r and phase θ. The coefficient is given by Ci = Re [er+iθ]. Note
that for complex-valued neural networks predicting magnitude and phase, the
network structure would look like (a), where the output complex number is
interpreted as the complex number log(Ci).

θ. The output is then, Re [er+iθ]. The number of parameters are 1153, and 1218 respectively.
Network is trained with stochastic reconfiguration, constant damping factor 10−4, and
gradient descent update rule with stepsize 3 × 10−3. Best results are reported from 10
different initialization runs. The result is given in figure 5.6

.

100 101 102 103

Niter

−0.5

0.0

0.5

E
/N

(a)

100 101 102 103

Niter

10-5

10-3

10-1

(E
−
E

0
)/
N

(b)

NN_linear_tanh_a4
NN_tanh_a4
Exact

Figure 5.6.: Convergence plot: The energy per site is plotted against the number of itera-
tion. The network with exponential output unit could converge to the ground
state, while the linear output network fails.

Lesson learned here is that one should restricted to subspace if possible. take log.

64

5.2. VMC Result

5.2.2. Optimization methods

We discuss some general tips on how to train the network to convergence.

1. Special care is taken to ensure numerical stability of exponential output. In most of
the neural networks we considered, including RBM, a global sum pooling is applied
following an exponential operation in the final stage. The magnitude r is an extensive
quantity. It grows with the system size and also the width of the network. For single
precision floating point number, overflow occurs for exp(x) with roughly x > 89,
which is not a big number consider a system size of 10× 10.

We consider three different ways to deal with the problem: (1) Clipping the mag-
nitude, (2) subtracting an stabilizer, (3) working with log magnitude. (3) seems to
be most natural solution in terms of numerical properties and exactness, while (1) is
stabler in some cases.

To clip the magnitude, one setup a range according to the precision one works with,
e.g. [−70, 70] and clip the magnitude once the magnitude is outside the range. This
avoid the overflow or underflow, but make the gradient of configurations with clip-
ping vanish. After some coefficient touch the ceiling, the other should start getting
gradient for shrinking magnitude. The advantage of this approach is that for any
configuration input, the output would be a valid number. One can easily restart the
Monte Carlo sampling without running into problem.

The fact that the magnitude is extensive is similar to the energy of the configuration
in classical Monte Carlo calculation. For the computation of VMC, only the difference
between two configuration matters. As a result, we can store the largest magnitude
for each VMC update, and subtract the magnitude by the largest magnitude we have
in the previous run. This will make almost all coefficient become smaller than one
and is than stable. We do not need to set an upper bound. However, problems may
occur when one naively restart the Monte Carlo sampling from random initializa-
tion. Since the largest magnitude from previous run might be large, and the random
initialized configuration might have very small magnitude, underflow would occur
and Metropolis update would fail. Special care need to be taken in latter stage of
optimization if one want to restart the Monte Carlo sampling.

The second methods fail because we are still working with the exponential unit be-
fore the division between two configurations. The natural way to avoid this problem
is to work with exponential of the difference instead, i.e.:

〈α|ψ〉
〈β|ψ〉

−→ exp [log(〈α|ψ〉)− log(〈β|ψ〉)].

By this, we could have a stable algorithm in the Metropolis update. Note that even
though complex-valued output is natural in this setting, we could still work with
real-valued output with the phase being π or −π.

65

5. Results and Discussion

2. Good initialization. With a good initialization scheme, for random configurations
the distribution of the amplitudes should be roughly randomly distributed around
origin. In terms of real amplitudes, this means we will have positive and negative
values. This is crucial for optimization. It is usually enough by following the stan-
dard neural network initialization scheme.

3. Stochastic reconfiguration is necessary for convergence to good local minimum.
Results from numerical experiment suggests that none of the first-order methods
converges to good local minimum. With SR method, wavefunction usually con-
verges to a different and better local minimum. See figures 5.7

.

, 5.8

.

and discussion of
setup of the experiment below.

0 1000 2000 3000 4000 5000
Niter

−0.4

−0.2

0.0

0.2

E
/N

GD1e-04
Mom1e-05
Adam1e-03
Adam1e-04
Adam1e-05
RMSprop1e-03

RMSprop1e-04
RMSprop1e-05
Adadelta1e-03
Adadelta1e-04
Adadelta1e-05
DMRG

Figure 5.7.: Convergence plot: The energy per site is plotted against the number of itera-
tion. The label shows the name of the method and the stepsize. For example,
RMSprop1e-03 is the RMSprop method with stepsize 10−3.

4. Restart Monte Carlo Sampling. It is observed that variational energy in VMC may
jump to a higher value, when one restart the Monte Carlo walkers after a long VMC
optimization. This happens for frustrated problem in larger system size. One will ob-
serve the new walkers in configuration with large ferromagnetic domain. A possible
explanation is that since RBMQS or NNQS are flexible and extremely large output is
allowed, for certain favorable configuration the magnitude would grow large very
fast. This effectively creates disconnected peaks in the wavefunction, which results
in configuration space not being ergodic anymore because of the exponential barrier
of the deep valley. New walkers however might land on some disconnected part in
the configuration space, which is left out in previous VMC optimization. This would
then usually lead to a jump in the variational energy.

To prevent such behaviour, it is recommend to introduce new random walkers after
certain period of time. The cost for warming up the walker is acceptable if this is

66

5.2. VMC Result

not done in every update. In this thesis, we re-initialize all walkers after hundreds of
updates.

5. Trust Region method For deeper networks, it is observed that it is helpful to adopt
the stepsize selection based on argument from trust region [101

.

, 3

.

]. While large up-
dates in wavefunctions would often ruin VMC iteration, conservative and small up-
dates slow down the convergence. By stepsize selection, we can speed up the small
update that occur at early stage of deep network optimization. For detail of the step-
size selection method, see 2.2.5

.

.

6. Multiple runs. Even with all the correct setup, different random initialization usu-
ally lead to different final result. By different final result, we mean that the difference
in variational energy per site is greater than roughly 2%. For a simple problem, e.g.
4 × 4 Heisenberg model, more than 70% of the runs could converge to the ground
state. But for harder problem, it might happen that less than 30% converge to the
best energy one could obtain. So for all the result reported, we have all at least run
the same optimization 10 times.

100 101 102 103 104

Niter

−0.4

−0.2

0.0

0.2

0.4

E
/N

SR+Mom
SR
DMRG

Figure 5.8.: Convergence plot: The energy per site is plotted against the number of iter-
ation. The blue line is optimized with the SR method with SGD-like update
and a stepsize ranging from 10−3 to 10−4. The black line is optimized with the
SR method with Momentum-like update and a stepsize ranging from 10−4 to
10−5.

In the following, we demonstrate the VMC optimization for J1-J2 model on 8 × 8 lat-
tice with J2/J1 = 0.5. While the problem itself is hard, we consider a relatively simple
wavefunction, the 2-site translational invariant RBM (tRBM). The complexity of the wave-
function is controlled by the number of channels α. Here, we consider α = 8, which has

67

5. Results and Discussion

1048 variational parameters. For both first-order methods and SR method, we consider
5000 Monte Carlo samples per update. Best results are reported from 10 runs.

For first-order methods, we consider the vanilla stochastic gradient descent (GD), stochas-
tic gradient descent with Momentum method (Mom), Adam, RMSprop and Adadelta with
various stepsizes. The result is shown in figure 5.7

.

. We see that with first-order method,
we could not reach comparable result with DMRG method. This is not because the wave-
function chosen is incapable of representing the state. We see in the optimization with SR
method that this is indeed a problem of optimization. We are not able to reach a good local
minimum with first-order methods even with only 1048 variational parameters.

The plot includes 5000 updates. For more updates with same stepsize or smaller step-
size, the results remain the same. Notice that for first-order method, the results look
promising in the beginning stage of the optimization. This is consistent with the sugges-
tion in [26

.

], which recommend to use a large regularization/damping for the beginning
stage of the optimization.

In contrast, the stochastic reconfiguration method shows better optimization results. In
figure 5.8

.

, we see that for both SGD-like update or Momentum-like update, we could have
comparable result with DMRG with 1.5% difference in variational energy.

5.2.3. VMC with NNQS

Now, we give the main result of this thesis. We consider VMC with three different NNQS
on 8 × 8 lattice for J1-J2 model with J2/J1 = 0.5 and PBC. The first network is 1-hidden
layer neural network with real weights (NN). The activation function is tanh and with
two real value output representing phase θ and magnitude r. The wavefunction is then
Re[er+iθ].

The second network is 2-site translational invariant RBM (tRBM) with filter size the same
as system size, i.e. 8 × 8. We consider complex weight and softplus2 activation function.
The third network is two-hidden layer fully convolution network (FCN2), which repeats
the circular convolution in first layer of tRBM in its second layer. The filter size for both
layers of FCN2 are 4× 4, but with stride = 1 in the first layer, and stride = 2 in the second
layer. The number of channel is doubled in the second layer.

After VMC optimization, the best variational energy per site by tRBM is EtRBM/N =
−0.4924 and FCN2 EFCN2/N = −0.4929. This is about 1% higher than variational en-
ergy obtained by other methods. This result is however better than SBS result reported
in [78

.

]. The accuracy becomes higher with the increase of number of parameters but we
observe the gain decreases because the hardness of optimization. In addition, the accuracy
becomes higher with the increasing depth of the network. However, our result is limited
to two hidden layer networks, since the optimization for three hidden layer networks is
too high.

We could observe patterns in the weights of the NNQS. For the visualization plot of the
weights in NNQS see Appendix B

.

.

68

5.3. Supervised Learning Result

0 2500 5000 7500 10000 12500 15000 17500
Npara

−0.49

−0.48
E
/
N

DMRG
tRBM

FCN2
NN

Figure 5.9.: Variational energy per site versus number of variational parameters. The base-
line is the DMRG result in [28

.

].

5.3. Supervised Learning Result

We consider the supervised learning for quantum amplitude as a regression problem. The
input is the spin configuration in computation basis σ 4

.

. The output is the quantum am-
plitude ψ(σ) = 〈σ|ψ〉 ∈ R, since we consider real Hamiltonian.

There is some subtlety in defining the cost (risk) function. Our goal is simple that we
want to maximize the fidelity F or its square.

F(|ψ1〉 , |ψ2〉) =

√
〈ψ1|ψ2〉 〈ψ2|ψ1〉
〈ψ1|ψ1〉 〈ψ2|ψ2〉

However, for unnormalized wavefunctions, such quantities is global and does not have
meaning for specific configuration. This is made explicit by looking at a target wavefunc-
tion |ψ1〉 and a real variational wavefunction |ψ2〉,

F(|ψ1〉 , |ψ2〉) =
〈ψ1|ψ2〉√

〈ψ1|ψ1〉 〈ψ2|ψ2〉
=
∑
σ

P (σ)
〈σ|ψ2〉
〈σ|ψ1〉

√
〈ψ1|ψ1〉
〈ψ2|ψ2〉

(5.4)

Recall the definition (3.1

.

), the loss function could be 〈σ|ψ2〉
〈σ|ψ1〉 , if the variational wavefunc-

tion and the target wavefunction are both normalized. However, the variational wave-
function is usually not normalized. As a result, no corresponding loss function for fidelity
could be defined, even assuming the target wavefunction is normalized. This is because
〈ψ2|ψ2〉 is a global quantities defined on all configurations, which is intractable.

If we could not formulate the loss function, that means we can not perform stochastic
gradient descent for optimization and thus we can not work with large problem that we

4Note that is equivalent to only taking half of the one-hot encoding. This is because of the redundancy in
one hot encoding for categorical data with two classes, i.e. spin-1/2.

69

5. Results and Discussion

are interested in. Though we could not work with fidelity directly, we can define some
other objective functions such that by minimizing those objective functions, the fidelity
would be maximized. We point out three different approaches.

One simplest approach that would be simply consider the L2 loss, | 〈σ|ψ1〉 − 〈σ|ψ2〉 |2.
If the data comes from a uniform sampling, this is the same as minimizing the distance in
Hilbert space. The problem with this approach is that most coefficients are small, as we
see in figure 5.4

.

. Directly applying this method will typically result in a machine learned
to output zero regardless of the input. To address the issue of imbalanced data, in [5

.

], they
consider training with sampling from the target wavefunction and modifying the output
label to

√
D 〈σ|ψ〉, where D denote the Hilbert space dimension.

The second approach is to work with cosine similarity defined on a batch of data. That
is,

−Fbatch(|ψ1〉 , |ψ2〉) = −
∑

σ∈batch 〈ψ1|σ〉 〈σ|ψ2〉√∑
σ∈batch 〈ψ1|σ〉 〈σ|ψ1〉

√∑
σ∈batch 〈ψ2|σ〉 〈σ|ψ2〉

(5.5)

By minimizing this cost, we try to align some coefficients of the vectors at a time. It is ob-
served that we could learn the full quantum amplitude with this cost function. We observe
no difference in training with data sampled from uniform distribution or the wavefunction
distribution.

5.3.1. From exact diagonalization

We demonstrate that supervised learning with batch cosine similarity as cost function for
1d J1-J2 model on 16 sites with periodic boundary condition and J2/J1 = 0.2. The ground
state is obtained from exact diagonalization for full Hilbert space without restricting to
symmetry subspace. We consider batch size of 500 and learning rate of 10−3. The first
example is with 1-hidden layer neural network with softplus2 activation and exponential
output unit with Momentum method. The second example is tRBM with Adam. There
is no special reason for the choice and the hyper-parameters are not tuned. The result is
shown in figure 5.10

.

.
The dimension of the Hilbert space is dim(H) = 65536. In this case, we can compute

the exact (total) fidelity and it is also marked in the figure. The networks converge around
50000 iterations, which is about ∼ 380 epochs. The large number in epochs needed might
become a problem for training large problems.

It should be stressed that all hyper-parameters are not tuned in this experiment. There is
no specific reason for choosing Momentum method and Adam. With tuning the learning
rate, it is possible to have a faster convergence. The training is quite robust. The only
problem observed is the increasing of magnitude in the wavefunctions when the stepsize
is too large, which results in overflow. Regularization on the weight might help in this case
but is not tested.

We further demonstrate as in the inset of figure 5.10

.

that it is easy to combine VMC
with supervised learning result. Note that this is different from [5

.

]. With the combination

70

5.4. Discussion and Future work

0 50000 100000
of steps

10-3

10-2

10-1

100

1
−
F

(a) NN

0 50000 100000
of steps

10-4

10-3

10-2

10-1

100

1
−
F

(b) tRBM

batch
total

0 100
10-5

10-4

∆
E

VMC

Figure 5.10.: Supervised learning with (a) NN (b) tRBM. We minimize the negative batch
fidelity and effectively minimize the negative (total) fidelity between the tar-
get wavefunction and variational wavefunction. In (a) inset, we show the
error in variational energy with VMC optimization after supervised learning.

of VMC and supervised learning, it is possible to use supervised learning to train the
wavefunctions with previous results to a good initial point in the parameter space, and
VMC to fine tune and reach even better result.

One could use direct sampling from the explicit eigenvector given to generate batch of
training data for supervised learning. For larger problem, where the exact eigenvector
could not be formed, one could use MCMC sampling from the wavefunction. We describe
an alternative approach based on MCMC sampling.

5.3.2. From Monte Carlo sampling

The third approach actually considers directly the fidelity as cost function. However, the
problem is formulated by considering sampling from the target wavefunction and the vari-
ational wavefunction. Consider (2.67

.

), we see we can actually define a loss function

L = − 〈σ|ψ1〉
〈σ′|ψ1〉

〈σ′|ψ2〉
〈σ|ψ2〉

, (5.6)

where σ ∼ P1(σ),σ′ ∼ P2(σ
′).

By minimize this loss function with sampling from the target wavefunction and varia-
tional wavefunction, we direct maximize the fidelity.

5.4. Discussion and Future work

In this thesis, we review the methods in machine learning and physics that are related to
VMC. We provide implementation based on TensorFlow for supervised learning and VMC

71

5. Results and Discussion

with NNQS. The implementation supports both CPU/GPU backends. The result of NNQS
with VMC on 2d J1-J2 model suggests that it is not yet but a promising method for high
dimensional frustrated problem.

Feed-forward neural network, especially convolution neural network, with various dif-
ferent activation could reach an reasonable result with VMC. It is robust to the structure
chosen. It suggests that it is very likely that general neural networks cover the space of
physical states.

However, the optimization is hard. We show example that with 1-hidden layer neural
network, with first-order method, one can not find the good local minimum in the varia-
tional space. We suggest two different ways to circumvent the difficulty that is supervised
learning and K-FAC.

We formulate the supervised learning with batch fidelity as cost function. It is shown
that one could learn the quantum amplitude directly without splitting the sign and mag-
nitude. This makes it possible to carry out VMC optimization after supervised learning.
With supervised learning as a good initialization scheme for VMC optimization, it is pos-
sible that one could tackle hard problem with increasing number of parameters.

The increasing number of parameters with increasing depth could also be solved by
introducing approximated SR method. K-FAC is a promising approximation for Fisher
information matrix for neural networks. Since for ground state calculation in VMC we do
not need the exact overlapping matrix, it is possible to combine K-FAC and VMC with
NNQS for approximated SR method.

Due to the time constraints, many interested topics remain unexplored and left for fu-
ture work. This includes the two methods above for extending VMC to deeper networks,
studying the effect of activation functions, depth of the networks and regularization.

72

Appendix

73

A. Neural Network Quantum State (NNQS)

A.1. Guide

To run the project, first clone the repository from github.

git clone https://github.com/ShHsLin/Neural-Network-Quantum-State.git

Requirements: python 2.7 (may not support some operation), python >=3, TensorFlow
>=1.4, Numpy, Scipy

Commands: To see the help list as in A.2

.

, and run the VMC of NNQS, one can run

1 # Show the help list
2 python train_NQS.py --help
3 # Run VMC for 2d AFH on 4x4 lattice, 2000 MC sampling per update
4 # for 100 steps
5 python train_NQS.py --l 4 --dim 2 --num_sample 2000 --num_iter 100

Source Code A.1.

More details are given in the README.

git clone https://github.com/ShHsLin/Neural-Network-Quantum-State

75

A. Neural Network Quantum State (NNQS)

1 usage: train_NQS.py [-h] [--l L] [--net WHICH_NET] [--lr LR]
2 [--num_iter NUM_ITER] [--num_sample NUM_SAMPLE]
3 [--batch_size BATCH_SIZE] [--alpha ALPHA] [--opt OPT]
4 [--H H] [--dim DIM] [--J2 J2] [--SR SR] [--reg REG]
5 [--path PATH] [--act ACT] [--SP SP]
6 [--using_complex USING_COMPLEX]
7

8 Variational Monte Carlo with NNQS
9

10 optional arguments:
11 -h, --help show this help message and exit
12 --l L system size. Default: 10
13 --net WHICH_NET Name of the Neural Network. Default: sRBM
14 --lr LR learning rate. Default: 1e-3
15 --num_iter NUM_ITER number of iteration for optimization. It is suggested
16 that the multiplication of learning rate and number of
17 iteration be around one, i.e. lr * num_iter = 1.
18 Default: 1500
19 --num_sample NUM_SAMPLE
20 Number of sampling in Monte Carlo process. Default:
21 5000
22 --batch_size BATCH_SIZE
23 Batch size in Network pretraining. Default: 500
24 --alpha ALPHA controll parameter for model complexity. Default: 4
25 --opt OPT optimizer for the neural network. Default: Momentum
26 method
27 --H H target Hamiltonian for optimization. Default: AFH
28 --dim DIM Dimension of the system. 1d: chain, 2d: square
29 lattice.Input should be integer. Default: 1
30 --J2 J2 The J2/J1 value in J1J2 model Default: 1.
31 --SR SR Using Stochastic Reconfiguration (SR) method or not.
32 Giving True(1) or False(0). Default: 1.
33 --reg REG Scaling factor for fixed scale weight decay for
34 regularization, s.t. gradient += scale * W. Default:
35 0.
36 --path PATH path to the directory where wavefunction and E_log are
37 saved. Default: ''
38 --act ACT nonlinear activation function in the networkDefault:
39 softplus2
40 --SP SP True(1): single precision, False(0): double precision
41 Default: True(1)

Source Code A.2.: The help list from "python train_NQS.py –help"

76

B. Visualization of Weights

We show the visualization of tRBM and FCN2 wavefunction for J1-J2 model on 8×8 lattice
with J2/J1 = 0.5. The setup for the VMC optimization is as in 5.2.2

.

. We could observe clear
patterns in tRBM wavefunction. However, for a two-layer convolution network FCN2, the
pattern is relatively obscure.

B.1. tRBM

The tRBM wavefunction with complexity α = 16 has one convolutional layers and the
filter size 8 × 8. The convolutional layer is with filter of dimension [8, 8, 1, 16], which is
a 8 × 8 size filter mapping from 1 channel to 16 channels. Ignoring the biases term, we
visualize the real and the imaginary part of these 16 different 8× 8 filters in figure B.1

.

and
B.2

.

.
The tRBM wavefunction also has an one-body bias term, which is equivalent to a con-

volution filter of the size of unit cell. The visualization of the bias filter are given in figure
B.3

.

and B.4

.

.

B.2. FCN2

The FCN2 wavefunction with complexity α = 12 has two convolutional layers and the
filter size 4 × 4. The first layer is with filter of dimension [4, 4, 1, 12], which is a 4 × 4 size
filter mapping from 1 channel to 12 channels. Ignoring the biases term, we visualize the
real and the imaginary part of these 12 different 4× 4 filters in figure B.5

.

and B.6

.

.
The second convolutional layer is with filter of dimension [4, 4, 12, 24]. We also show the

visualization of 288 filters in figure B.7

.

and B.8

.

.

77

−1.0

−0.5

0.0

0.5

1.0

Conv1 Real Weights

Figure B.1.: The visualization of the real part of the convolution kernel.

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Conv1 Imaginary Weights

Figure B.2.: The visualization of the imaginary part of the convolution kernel.

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Real One-body Bias

Figure B.3.: The visualization of the real part of the one-body bias term as convolution
kernel.

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

Imaginary One-body Bias

Figure B.4.: The visualization of the imaginary part of the one-body bias term as convolu-
tion kernel.

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Conv1 Real Weights

Figure B.5.: The visualization of the real part of the first convolution kernel.

−1.5

−1.0

−0.5

0.0

0.5

1.0

Conv1 Imaginary Weights

Figure B.6.: The visualization of the imaginary part of the first convolution kernel.

−0.3

−0.2

−0.1

0.0

0.1

0.2

Conv2 Real Weights

Figure B.7.: The visualization of the real part of the second convolution kernel.

−0.2

−0.1

0.0

0.1

0.2

0.3

Conv2 Imaginary Weights

Figure B.8.: The visualization of the imaginary part of the second convolution kernel.

B.2. FCN2

83

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation,
10(2):251–276, 1998.

[3] Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimiza-
tion using kronecker-factored approximations. In International Conference on Learning
Representations, 2017.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks. In Advances in neural information processing systems,
pages 153–160, 2007.

[5] Zi Cai and Jinguo Liu. Approximating quantum many-body wave functions using
artificial neural networks. Phys. Rev. B, 97:035116, Jan 2018.

[6] Lorenzo Campos Venuti and Paolo Zanardi. Quantum critical scaling of the geomet-
ric tensors. Phys. Rev. Lett., 99:095701, Aug 2007.

[7] Giuseppe Carleo, Federico Becca, Laurent Sanchez-Palencia, Sandro Sorella, and
Michele Fabrizio. Light-cone effect and supersonic correlations in one- and two-
dimensional bosonic superfluids. Phys. Rev. A, 89:031602, Mar 2014.

[8] Giuseppe Carleo, Federico Becca, Marco Schiró, and Michele Fabrizio. Localization
and glassy dynamics of many-body quantum systems. Scientific reports, 2:243, 2012.

[9] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602–606, 2017.

[10] Lorenzo Cevolani, Giuseppe Carleo, and Laurent Sanchez-Palencia. Protected
quasilocality in quantum systems with long-range interactions. Phys. Rev. A,
92:041603, Oct 2015.

[11] Hitesh J. Changlani, Jesse M. Kinder, C. J. Umrigar, and Garnet Kin-Lic Chan. Ap-
proximating strongly correlated wave functions with correlator product states. Phys.
Rev. B, 80:245116, Dec 2009.

85

Bibliography

[12] Jing Chen, Song Cheng, Haidong Xie, Lei Wang, and Tao Xiang. Equivalence of
restricted boltzmann machines and tensor network states. Phys. Rev. B, 97:085104,
Feb 2018.

[13] Chung-Pin Chou, Frank Pollmann, and Ting-Kuo Lee. Matrix-product-based pro-
jected wave functions ansatz for quantum many-body ground states. Phys. Rev. B,
86:041105, Jul 2012.

[14] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and ac-
curate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

[15] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314, 1989.

[16] Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. Quantum entanglement in neural
network states. Phys. Rev. X, 7:021021, May 2017.

[17] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic sym-
metry in convolutional neural networks. arXiv preprint arXiv:1602.02660, 2016.

[18] Jack J Dongarra and Danny C Sorensen. Linear algebra on high performance com-
puters. Applied Mathematics and Computation, 20(1-2):57–88, 1986.

[19] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and Pascal
Vincent. The difficulty of training deep architectures and the effect of unsupervised
pre-training. In Artificial Intelligence and Statistics, pages 153–160, 2009.

[20] Paolo Facchi, Ravi Kulkarni, V.I. Man’ko, Giuseppe Marmo, E.C.G. Sudarshan, and
Franco Ventriglia. Classical and quantum fisher information in the geometrical for-
mulation of quantum mechanics. Physics Letters A, 374(48):4801 – 4803, 2010.

[21] Andrew J. Ferris and Guifre Vidal. Perfect sampling with unitary tensor networks.
Phys. Rev. B, 85:165146, Apr 2012.

[22] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal. Quantum monte carlo
simulations of solids. Rev. Mod. Phys., 73:33–83, Jan 2001.

[23] Xun Gao and Lu-Ming Duan. Efficient representation of quantum many-body states
with deep neural networks. Nature communications, 8(1):662, 2017.

[24] Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov. Ul-
timate tensorization: compressing convolutional and fc layers alike. arXiv preprint
arXiv:1611.03214, 2016.

86

Bibliography

[25] A. Gendiar and T. Nishino. Latent heat calculation of the three-dimensional q =
3, 4, and 5 potts models by the tensor product variational approach. Phys. Rev. E,
65:046702, Apr 2002.

[26] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Rodriguez, and J. Ignacio
Cirac. Neural-network quantum states, string-bond states, and chiral topological
states. Phys. Rev. X, 8:011006, Jan 2018.

[27] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, pages 249–256, 2010.

[28] Shou-Shu Gong, Wei Zhu, D. N. Sheng, Olexei I. Motrunich, and Matthew P. A.
Fisher. Plaquette ordered phase and quantum phase diagram in the spin-12 J1−J2
square heisenberg model. Phys. Rev. Lett., 113:027201, Jul 2014.

[29] Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint
arXiv:1510.01799, 2015.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org

.

.

[31] Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix
for convolution layers. In International Conference on Machine Learning, pages 573–
582, 2016.

[32] Nitzan Guberman. On complex valued convolutional neural networks. arXiv
preprint arXiv:1602.09046, 2016.

[33] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn, Henri Verschelde,
and Frank Verstraete. Time-dependent variational principle for quantum lattices.
Phys. Rev. Lett., 107:070601, Aug 2011.

[34] Jutho Haegeman, Christian Lubich, Ivan Oseledets, Bart Vandereycken, and Frank
Verstraete. Unifying time evolution and optimization with matrix product states.
Phys. Rev. B, 94:165116, Oct 2016.

[35] R Haghshenas and DN Sheng. The u(1)-symmetric ipeps study of the spin-1/2
square j_{1}-j_{2} heisenberg model. arXiv preprint arXiv:1711.07584, 2017.

[36] M. B. Hastings. Quantum belief propagation: An algorithm for thermal quantum
systems. Phys. Rev. B, 76:201102, Nov 2007.

[37] Matthew B. Hastings, Iván González, Ann B. Kallin, and Roger G. Melko. Measuring
renyi entanglement entropy in quantum monte carlo simulations. Phys. Rev. Lett.,
104:157201, Apr 2010.

87

http://www.deeplearningbook.org

Bibliography

[38] Huan He, Yunqin Zheng, B Andrei Bernevig, and Nicolas Regnault. Entan-
glement entropy from tensor network states for stabilizer codes. arXiv preprint
arXiv:1710.04220, 2017.

[39] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
Computer Vision (ICCV), 2017 IEEE International Conference on, pages 2980–2988. IEEE,
2017.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[42] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of
data with neural networks. science, 313(5786):504–507, 2006.

[43] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[44] Wen-Jun Hu, Federico Becca, Alberto Parola, and Sandro Sorella. Direct evidence
for a gapless Z2 spin liquid by frustrating néel antiferromagnetism. Phys. Rev. B,
88:060402, Aug 2013.

[45] Yichen Huang and Joel E Moore. Neural network representation of tensor network
and chiral states. arXiv preprint arXiv:1701.06246, 2017.

[46] Kota Ido, Takahiro Ohgoe, and Masatoshi Imada. Time-dependent many-variable
variational monte carlo method for nonequilibrium strongly correlated electron sys-
tems. Phys. Rev. B, 92:245106, Dec 2015.

[47] Sham M Kakade. A natural policy gradient. In Advances in neural information process-
ing systems, pages 1531–1538, 2002.

[48] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2013.

[49] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Advances in Neural Information Processing Systems,
pages 972–981, 2017.

[50] Jack PC Kleijnen and Reuven Y Rubinstein. Optimization and sensitivity analysis
of computer simulation models by the score function method. European Journal of
Operational Research, 88(3):413–427, 1996.

88

Bibliography

[51] M.S. Leifer and D. Poulin. Quantum graphical models and belief propagation. An-
nals of Physics, 323(8):1899 – 1946, 2008.

[52] Ding Liu, Shi-Ju Ran, Peter Wittek, Cheng Peng, Raul Blázquez García, Gang Su,
and Maciej Lewenstein. Machine learning by two-dimensional hierarchical tensor
networks: A quantum information theoretic perspective on deep architectures. arXiv
preprint arXiv:1710.04833, 2017.

[53] James Martens. Second-order optimization for neural networks. PhD thesis, University
of Toronto (Canada), 2016.

[54] James Martens and Roger Grosse. Optimizing neural networks with kronecker-
factored approximate curvature. In International conference on machine learning, pages
2408–2417, 2015.

[55] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional
networks through ffts. arXiv preprint arXiv:1312.5851, 2013.

[56] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The journal of chemical physics, 21(6):1087–1092, 1953.

[57] Fabio Mezzacapo, Norbert Schuch, Massimo Boninsegni, and J Ignacio Cirac.
Ground-state properties of quantum many-body systems: entangled-plaquette
states and variational monte carlo. New Journal of Physics, 11(8):083026, 2009.

[58] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2012.

[59] Guido F Montúfar. Universal approximation depth and errors of narrow belief net-
works with discrete units. Neural computation, 26(7):1386–1407, 2014.

[60] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

[61] Eric Neuscamman, C. J. Umrigar, and Garnet Kin-Lic Chan. Optimizing large pa-
rameter sets in variational quantum monte carlo. Phys. Rev. B, 85:045103, Jan 2012.

[62] M. P. Nightingale and Vilen Melik-Alaverdian. Optimization of ground- and excited-
state wave functions and van der waals clusters. Phys. Rev. Lett., 87:043401, Jul 2001.

[63] Yusuke Nomura, Andrew S. Darmawan, Youhei Yamaji, and Masatoshi Imada. Re-
stricted boltzmann machine learning for solving strongly correlated quantum sys-
tems. Phys. Rev. B, 96:205152, Nov 2017.

89

Bibliography

[64] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Ten-
sorizing neural networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages
442–450. Curran Associates, Inc., 2015.

[65] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks.
arXiv preprint arXiv:1301.3584, 2013.

[66] Vasily Pestun, John Terilla, and Yiannis Vlassopoulos. Language as a matrix product
state. arXiv preprint arXiv:1711.01416, 2017.

[67] Vasily Pestun and Yiannis Vlassopoulos. Tensor network language model. arXiv
preprint arXiv:1710.10248, 2017.

[68] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Swish: a self-gated activation
function. arXiv preprint arXiv:1710.05941, 2017.

[69] Elina Robeva and Anna Seigal. Duality of graphical models and tensor networks.
arXiv preprint arXiv:1710.01437, 2017.

[70] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[71] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[72] Hiroki Saito. Solving the bose–hubbard model with machine learning. Journal of the
Physical Society of Japan, 86(9):093001, 2017.

[73] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann
machines for collaborative filtering. In Proceedings of the 24th international conference
on Machine learning, pages 791–798. ACM, 2007.

[74] A. W. Sandvik and G. Vidal. Variational quantum monte carlo simulations with
tensor-network states. Phys. Rev. Lett., 99:220602, Nov 2007.

[75] Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio Cirac. Computa-
tional complexity of projected entangled pair states. Phys. Rev. Lett., 98:140506, Apr
2007.

[76] Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio Cirac. Simulation
of quantum many-body systems with strings of operators and monte carlo tensor
contractions. Phys. Rev. Lett., 100:040501, Jan 2008.

90

Bibliography

[77] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
pages 1889–1897, 2015.

[78] Alessandro Sfondrini, Javier Cerrillo, Norbert Schuch, and J. Ignacio Cirac. Sim-
ulating two- and three-dimensional frustrated quantum systems with string-bond
states. Phys. Rev. B, 81:214426, Jun 2010.

[79] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From the-
ory to algorithms. Cambridge university press, 2014.

[80] Olga Sikora, Hsueh-Wen Chang, Chung-Pin Chou, Frank Pollmann, and Ying-Jer
Kao. Variational monte carlo simulations using tensor-product projected states.
Phys. Rev. B, 91:165113, Apr 2015.

[81] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. nature, 529(7587):484–489, 2016.

[82] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[83] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[84] Sandro Sorella. Generalized lanczos algorithm for variational quantum monte carlo.
Phys. Rev. B, 64:024512, Jun 2001.

[85] Sandro Sorella. Wave function optimization in the variational monte carlo method.
Phys. Rev. B, 71:241103, Jun 2005.

[86] E Miles Stoudenmire and David J Schwab. Supervised learning with quantum-
inspired tensor networks. arXiv preprint arXiv:1605.05775, 2016.

[87] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation. In
Advances in neural information processing systems, pages 1057–1063, 2000.

[88] Julien Toulouse and CJ Umrigar. Full optimization of jastrow–slater wave functions
with application to the first-row atoms and homonuclear diatomic molecules. The
Journal of chemical physics, 128(17):174101, 2008.

[89] Julien Toulouse and Cyrus J Umrigar. Optimization of quantum monte carlo wave
functions by energy minimization. The Journal of chemical physics, 126(8):084102, 2007.

91

Bibliography

[90] Chiheb Trabelsi, Olexa Bilaniuk, Dmitriy Serdyuk, Sandeep Subramanian, João Fe-
lipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J
Pal. Deep complex networks. arXiv preprint arXiv:1705.09792, 2017.

[91] Robert R Tucci. Quantum bayesian nets. International Journal of Modern Physics B,
9(03):295–337, 1995.

[92] Robert R Tucci. How to compile a quantum bayesian net. arXiv preprint quant-
ph/9805016, 1998.

[93] Robert R Tucci. Factorization of quantum density matrices according to bayesian
and markov networks. arXiv preprint quant-ph/0701201, 2007.

[94] C. J. Umrigar and Claudia Filippi. Energy and variance optimization of many-body
wave functions. Phys. Rev. Lett., 94:150201, Apr 2005.

[95] C. J. Umrigar, Julien Toulouse, Claudia Filippi, S. Sorella, and R. G. Hennig. Alle-
viation of the fermion-sign problem by optimization of many-body wave functions.
Phys. Rev. Lett., 98:110201, Mar 2007.

[96] Ling Wang, Zheng-Cheng Gu, Frank Verstraete, and Xiao-Gang Wen. Tensor-
product state approach to spin-12 square J1−J2 antiferromagnetic heisenberg model:
Evidence for deconfined quantum criticality. Phys. Rev. B, 94:075143, Aug 2016.

[97] Ling Wang and Anders W Sandvik. Critical level crossings in the square-lattice spin-
1/2j_1− j_2 heisenberg antiferromagnet. arXiv preprint arXiv:1702.08197, 2017.

[98] Julia Wildeboer and N. E. Bonesteel. Spin correlations and topological entanglement
entropy in a non-abelian spin-one spin liquid. Phys. Rev. B, 94:045125, Jul 2016.

[99] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. In Reinforcement Learning, pages 5–32. Springer, 1992.

[100] Michael M Wolf. Mathematical foundations of supervised learning. 2017.

[101] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable
trust-region method for deep reinforcement learning using kronecker-factored ap-
proximation. In Advances in neural information processing systems, pages 5285–5294,
2017.

[102] Paolo Zanardi, Paolo Giorda, and Marco Cozzini. Information-theoretic differential
geometry of quantum phase transitions. Phys. Rev. Lett., 99:100603, Sep 2007.

92

	Acknowledgements
	Abstract
	Introduction and Background Theory
	Introduction

	Body
	Method I: Variational Monte Carlo
	Problem Description
	Variational Monte Carlo algorithm
	Expectation value of observable
	Minimization of expectation value of observable
	Statistics of Variational Monte Carlo
	Stochastic Reconfiguration / Natural Gradient Method
	Stochastic Reconfiguration / Time Evolution
	Damping/Regularization and Stepsize
	Computational Complexity
	Fidelity and Entanglement

	Trial wavefunctions
	Matrix Product States (MPS)
	Entangled Plaquette States (EPS), Correlator Product State (CPS)
	String-Bond States (SBS)
	Restricted Boltzmann Machine Quantum State (RBMQS)
	Neural Network Quantum State (NNQS)
	Convolutional Neural Network Quantum State (CNNQS)
	Symmetry and Invariance
	Translational Invariant Restricted Boltzmann Machine

	Method II: Machine Learning
	Supervised Learning
	Linear Model
	Neural Network
	Optimization of Neural Network
	Initialization of Neural Network

	Policy Based Reinforcement Learning
	Kronecker-Factored Approximate Curvature
	Connection to Methods in Condensed Matter Physics

	Literature Review

	Results and Discussion
	Results and Discussion
	Implementation
	Wavefunction evaluation with level 3 parallelization
	GPU Speed up

	VMC Result
	Distribution of the coefficients of eigenvectors
	Optimization methods
	VMC with NNQS

	Supervised Learning Result
	From exact diagonalization
	From Monte Carlo sampling

	Discussion and Future work

	Appendix
	Neural Network Quantum State (NNQS)
	Guide

	Visualization of Weights
	tRBM
	FCN2

	Bibliography

